【題目】已知,下面結論正確的是( )
A.若,,且的最小值為π,則ω=2
B.存在ω∈(1,3),使得f(x)的圖象向右平移個單位長度后得到的圖象關于y軸對稱
C.若f(x)在上恰有7個零點,則ω的取值范圍是
D.若f(x)在上單調(diào)遞增,則ω的取值范圍是(0,]
科目:高中數(shù)學 來源: 題型:
【題目】已知真命題:“函數(shù)的圖象關于點成中心對稱圖形”的充要條件為“函數(shù)是奇函數(shù)”.
(Ⅰ)將函數(shù)的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應的函數(shù)解析式,并利用題設中的真命題求函數(shù)圖象對稱中心的坐標;
(Ⅱ)求函數(shù)圖象對稱中心的坐標;
(Ⅲ)已知命題:“函數(shù)的圖象關于某直線成軸對稱圖象”的充要條件為“存在實數(shù)和,使得函數(shù)是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設的真命題對它進行修改,使之成為真命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點的兩點,所對應的參數(shù)分別為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)當時,直線平分曲線,求的值;
(2)當時,若,直線被曲線截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié),一場突如其來的新型冠狀病毒感染的肺炎疫情,牽動著我們每個人的心,嚴重擾亂了大家的正常生活,在全國人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個小區(qū)的志愿者人數(shù)分別為60,40,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機抽取6人去支援夕陽紅敬老院.若再從這6人中隨機抽取2名作為負責人,則這2名志愿者來自不同小區(qū)的概率是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為平面直角坐標系中的一個動點(其中為坐標系原點),點到定點的距離比到直線的距離大1,動點的軌跡方程為.
(1)求曲線的方程;
(2)若過點的直線與曲線相交于、兩點.
①若,求直線的直線方程;
②分別過點,作曲線的切線且交于點,是否存在以為圓心,以為半徑的圓與經(jīng)過點且垂直于直線的直線相交于、兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的最大值;
(2)設函數(shù),若對任意實數(shù),當時,函數(shù)的最大值為,求a的取值范圍;
(3)若數(shù)列的各項均為正數(shù),,.求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調(diào)的銷售量;
(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,則當時,討論的單調(diào)性;
(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com