8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$與$\overrightarrow{n}$為共線向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

分析 (1)利用平面向量共線的性質(zhì)可得$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,整理即可得解.
(2)由(1)利用二倍角的正弦函數(shù)公式可求$sin2α=-\frac{7}{9}$,進而可得${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,結(jié)合范圍$a∈[{-\frac{π}{2},0}]$,可求sinα-cosα的值,即可得解.

解答 解:(1)∵m與n為共線向量,向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinx,1),
∴$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,
即$sinα+cosα=\frac{{\sqrt{2}}}{3}$;
(2)∵$1+sin2α={({sinα+cosα})^2}=\frac{2}{9}$,
∴$sin2α=-\frac{7}{9}$,
∴${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,
又∵$a∈[{-\frac{π}{2},0}]$,
∴sinα-cosα<0,
∴sinα-cosα=-$\frac{4}{3}$,
∴$\frac{sin2α}{sinα-cosα}$=$\frac{7}{12}$.

點評 本題主要考查了平面向量共線的性質(zhì),二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)是定義在R上的函數(shù),滿足f(x)=-f(-x),且當(dāng)x<0時,f(x)=x•$\root{3}{-1-x}$,則f(9)=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0)的圖象如圖所示,則f(x)的解析式為( 。
A.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$B.$f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$C.$f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$D.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè){an}是正數(shù)組成的等比數(shù)列,公比q=2,且a1a2a3…a33=233,則a3a6a9…a33=( 。
A.211B.215C.220D.222

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-a|+|x-5|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)如果對任意的實數(shù)x,都有f(x)≥1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,則$\frac{2-b}{3-a}$的取值范圍是( 。
A.(2,+∞)B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},2)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x,y滿足線性約束條件$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+5≥0}\end{array}\right.$,則z=2x+4y的最大值為38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若a1,a2,a3,a4四個數(shù)成等比數(shù)列,則$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線f(x)=sinx+ex+2在點(0,f(0))處的切線方程為y=2x+3.

查看答案和解析>>

同步練習(xí)冊答案