10.若復數(shù)z=$\frac{a+i}{2i}$(a∈R,i為虛數(shù)單位)的實部與虛部相等,則z的模等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

分析 利用復數(shù)的運算法則、實部與虛部的定義、模的計算公式即可得出.

解答 解:復數(shù)z=$\frac{a+i}{2i}$=$\frac{-i(a+i)}{-i•2i}$=$\frac{1}{2}-\frac{1}{2}ai$的實部與虛部相等,
∴$\frac{1}{2}=-\frac{1}{2}a$,解得a=-1.
∴z=$\frac{1}{2}+\frac{1}{2}$i,
則|z|=$\sqrt{(\frac{1}{2})^{2}×2}$=$\frac{\sqrt{2}}{2}$.
故選:B.

點評 本題考查了復數(shù)的運算法則、實部與虛部的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知正方形ABCD的對角線AC與BD相交于E點,將△ACD沿對角線折起,使得平面ABC⊥平面ADC(如圖),則下列命題中正確的是( 。
A.直線AB⊥直線CD,且直線AC⊥直線BD
B.直線AB⊥平面BCD,且直線AC⊥平面BDE
C.平面ABC⊥平面BDE,且平面ACD⊥BDE
D.平面ABD⊥平面BCD,且平面ACD⊥平面BDE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.冪函數(shù)y=f(x)的圖象經(jīng)過點(2,4),則f(x)的解析式為(  )
A.f(x)=2xB.f(x)=x2C.f(x)=2xD.f(x)=log2x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若m為實數(shù)且(2+mi)(m-2i)=-4-3i,則m=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.三棱錐S-ABC的棱長都相等,E,F(xiàn)是棱SC上的點,若SE=$\frac{1}{3}$SC,SF=$\frac{2}{3}$SC,則AE與BF所成角的余弦值為$\frac{17}{52}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-3,1)則下列結(jié)論正確的是( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和Sn滿足關系式:
Sn=($\frac{1+{a}_{n}}{2}$)2且an>0.
(1)寫出Sn與Sn-1(n≥2)的遞推關系式,并求出Sn關于n的表達式;
(2)若bn=(-1)n•Sn(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.某家庭用分期付款的方式購買一輛汽車,價格為15萬元,購買當天先付5萬元,以后每月這一天都交付1萬元,并加付欠款的利息,月利率為1%.若交付5萬元以后的第一個月開始算分期付款的第一期,共10期付完,則全部貨款付清后,買這輛汽車實際用的錢為15.55萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.過點P(-1,-2)的直線l分別交x軸的負半軸和y軸的負半軸于A,B兩點.
(1)當PA•PB最小時,求l的方程;
(2)設△AOB的面積為S,討論這樣的直線l的條數(shù).

查看答案和解析>>

同步練習冊答案