7.等比數(shù)列{an}的前n項和為Sn,已知a2a5=2a3,且a4與2a7的等差中項為$\frac{5}{4}$,則S4=(  )
A.29B.30C.33D.36

分析 設等比數(shù)列{an}的公比是q,由題意和等比數(shù)列的通項公式列出方程組,求出a1和q的值,由等比數(shù)列的前項和公式求出S4的值.

解答 解:設等比數(shù)列{an}的公比是q,
由題意得,$\left\{\begin{array}{l}{{a}_{2}{a}_{5}=2{a}_{3}}\\{2×\frac{5}{4}={a}_{4}+2{a}_{7}}\end{array}\right.$,即$\left\{\begin{array}{l}{{{a}_{1}}^{2}{q}^{5}=2{a}_{1}{q}^{2}}\\{2×\frac{5}{4}={a}_{1}{q}^{3}+2{a}_{1}{q}^{6}}\end{array}\right.$,
解得a1=16,q=$\frac{1}{2}$,
所以S4=$\frac{16(1-\frac{1}{{2}^{4}})}{1-\frac{1}{2}}$=32(1-$\frac{1}{16}$)=30,
故選B.

點評 本題考查等比數(shù)列的前項和公式、通項公式,以及方程思想的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$a={2^{-\frac{1}{3}}}$,$b={({2^{{{log}_2}3}})^{-\frac{1}{2}}}$,$c=\frac{1}{4}\int_0^π{sinxdx}$,則實數(shù)a,b,c的大小關系是( 。
A.a>c>bB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$f(x)=\frac{{{x^2}+33}}{x}(x∈{N^*})$,則f(x)在定義域上的最小值為( 。
A.$\frac{58}{5}$B.$\frac{23}{2}$C.$\sqrt{33}$D.$2\sqrt{33}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=4x+3y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知命題p,q是簡單命題,則“¬p是假命題”是“p∨q是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.“中國齊云山國際養(yǎng)生萬人徒步大會”得到了國內(nèi)外戶外運動愛好者的廣泛關注,為了使基礎設施更加完善,現(xiàn)需對部分區(qū)域進行改造.如圖,在道路 北側準備修建一段新步道,新步道開始部分的曲線段MAB是函數(shù)y=2sin(ωx+ϕ),(ω>0,0<ϕ<π),x∈[-4,0]的圖象,且圖象的最高點為A(-1,2).中間部分是長為1千米的直線段BC,且BC∥MN.新步道的最后一部分是以原點O為圓心的一段圓弧CN.
(1)試確定ω,ϕ的值
(2)若計劃在扇形OCN區(qū)域內(nèi)劃出面積盡可能大的矩形區(qū)域建服務站,并要求矩形一邊EF緊靠道路MN,頂點Q羅總半徑OC上,另一頂點P落在圓弧CN上.記∠PON=θ,請問矩形EFPQ面積最大時θ應取何值,并求出最大面積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD 為平行四邊形,
∠CAD=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=$\sqrt{2}$,AE=EC=1.
(1)求證:CE⊥AF;
(2)若二面角E-AC-F 的余弦值為$\frac{{\sqrt{3}}}{3}$,求點D 到平面ACF 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列說法正確的是( 。
A.?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設隨機變量X~N(1,52),若P(X<0)=P(X>a-2),則實數(shù)a的值為2

查看答案和解析>>

同步練習冊答案