精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,為常數),當時,只有一個實根;當時,只有3個相異實根,現給出下列4個命題:

有一個相同的實根;

有一個相同的實根;

的任一實根大于的任一實根;

的任一實根小于的任一實根.

其中真命題的序號是______.

【答案】①②④

【解析】

根據方程根的分布情況,繪制出三次函數的圖像,然后根據三次函數圖像與直線的交點情況判斷命題是否為真命題.

由題中條件可以推出,函數的極大值為,極小值為,

函數的圖像先增加后減小再增加,繪制出函數的圖像如下圖所示,

對于命題①,②,根據的圖像在極值點處的

發(fā)現分別與,有一個相同的實數根,

故命題①,②為真命題,

對于命題③,根據的圖像與直線,和的交點,

在函數單調遞減區(qū)間的交點不滿足命題,

故命題③為假命題,

對于命題④,根據的圖像與直線,和的交點,

可知交點滿足命題,故命題④為真命題.

故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段軸的交點滿足

(Ⅰ)求橢圓的標準方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點,當,且滿足時,求的面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知梯形中,,四邊形為矩形,,平面平面.

(1)求證:平面;

(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,離心率為的橢圓過點

(1)求橢圓的標準方程;

(2)若直線上存在點,且過點的橢圓的兩條切線相互垂直,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角AB,C的對邊分別為ab,c,且2cos2·cosB-sin(AB)sinB+cos(AC)=-.

(1)求cos A的值;

(2)若a=4,b=5,求方向上的投影.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

(1)求這200名學生每周閱讀時間的樣本平均數和中位數的值精確到0.01);

(2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.

(i)你認為9個名額應該怎么分配?并說明理由;

(ii)座談中發(fā)現9名學生中理工類專業(yè)的較多.請根據200名學生的調研數據,填寫下面的列聯(lián)表,并判斷是否有的把握認為學生閱讀時間不足(每周閱讀時間不足8.5小時)與“是否理工類專業(yè)”有關?

閱讀時間不足8.5小時

閱讀時間超過8.5小時

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的多面體中,四邊形為菱形,且,的中點.

(1)求證:平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當,求的單調區(qū)間;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線,直線的斜率為2.

(Ⅰ)若相切,求直線的方程;

(Ⅱ)若相交于,,線段的中垂線交,,求的取值范圍.

查看答案和解析>>

同步練習冊答案