1.已知$a={log_2}9-{log_2}\sqrt{3},b=1+{log_2}\sqrt{7},c=\frac{1}{2}+{log_2}\sqrt{13}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 先根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),化簡(jiǎn)a,b,c再根據(jù)y=log2x為增函數(shù)即可比較.

解答 解:a=log29-log2$\sqrt{3}$=log2$\frac{9}{\sqrt{3}}$=log2$\sqrt{27}$,
b=1+log2$\sqrt{7}$=log2$\sqrt{28}$,
c=$\frac{1}{2}$+log2$\sqrt{13}$=log2$\sqrt{26}$,
∵y=log2x為增函數(shù),$\sqrt{28}$>$\sqrt{27}$>$\sqrt{26}$,
∴b>a>c,
故選:B

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)和對(duì)數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+6的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}}$,則z=x+4y的最大值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)y=f(x)是函數(shù)y=logax(a>0,a≠1)的反函數(shù),若f(x)的圖象過(guò)點(diǎn)$(2,\frac{1}{4})$,則log2f(-1)的值為( 。
A.1B.2C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,若${S_n}+n=\frac{3}{2}{a_n}$.
(Ⅰ)求證數(shù)列{an+1}是等比數(shù)列,并求an的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足${b_n}={a_n}+λ•{(-2)^n}$,且數(shù)列{bn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.雙曲線x2-4y2=1的離心率為( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于?x∈R,都有f(-x)=f(x)成立.
(1)若x≥0時(shí),f(x)=(${\frac{1}{2}}$)x,求不等式f(x)>$\frac{1}{4}$的解集;
(2)若f(x+1)是偶函數(shù),且當(dāng)x∈[0,1]時(shí),f(x)=2x,求f(x)在區(qū)間[2015,2016]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=aln(x+1)-x2在(0,2)內(nèi)任取兩個(gè)實(shí)數(shù)m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.鈍角△ABC中,(2sinC-1)•sin2A=sin2C-sin2B,則sin(A-B)=( 。
A.0B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案