10.已知函數(shù)f(x)=aln(x+1)-x2在(0,2)內(nèi)任取兩個實數(shù)m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,則實數(shù)a的取值范圍是( 。
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

分析 轉(zhuǎn)化為在區(qū)間(1,3)內(nèi),恒有f′(x)=$\frac{a}{x+1}$-2x>1,即a>2x2+3x+1,x∈(1,3),根據(jù)二次函數(shù)的性質(zhì)可得.

解答 解:∵函數(shù)f(x)=aln(x+1)-x2,
∴f′(x)=$\frac{a}{x+1}$-2x,
∵在區(qū)間(0,2)內(nèi)任取兩個實數(shù)m,n,且m≠n,
若不等式 $\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,
∴在區(qū)間(1,3)內(nèi),恒有f′(x)=$\frac{a}{x+1}$-2x>1,
即令g(x)=2x2+3x+1,x∈(1,3),
根據(jù)二次函數(shù)的性質(zhì)可得g(x)max=g(3)=28,
∴a≥28,
故選:D.

點評 本題考查了函數(shù)的性質(zhì),導(dǎo)數(shù)的運用,結(jié)合不等式恒成立問題求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能為等比數(shù)列?若可能,求出此等比數(shù)列的通項公式;若不可能,說明理由;
(2)設(shè)bn=(-1)n(an+n+2),Sn為數(shù)列{bn}的前n項和,且對于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$a={log_2}9-{log_2}\sqrt{3},b=1+{log_2}\sqrt{7},c=\frac{1}{2}+{log_2}\sqrt{13}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合U=R,A={x|-4≤x≤2},B={x|-1<x≤3},則A∩B=( 。
A.{x|-4≤x≤2或-1<x≤3}B.{x|-1<x≤2}C.{x|-1≤x≤2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.長為2$\sqrt{3}$的線段EF的端點E,F(xiàn)分別在直線y=$\frac{{\sqrt{3}}}{3}$x和y=-$\frac{{\sqrt{3}}}{3}$x上滑動,P是線段EF的中點.
(Ⅰ)求點P的軌跡M的方程;
(Ⅱ)設(shè)直線l:x=ky+m與軌跡M交于A,B兩點,若以AB為直徑的圓經(jīng)過定點C(3,0)(C點與A,B點不重合),求證:直線l經(jīng)過定點Q,并求出Q點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法:
①獨立性檢驗,適用于檢查兩個變量彼此相關(guān)或相互獨立的假設(shè)檢驗;
②設(shè)有一個回歸方程$\widehat{y}$=3-5x,變量x增加一個單位時,y平均增加5個單位;
③相關(guān)系數(shù)r越接近1,說明模型的擬和效果越好;
其中錯誤的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{{2{e^x}}}{x}$.
(1)若曲線y=f(x)在點(x0,f(x0))處的切線方程為ax-y=0,求x0的值;
(2)當x>0時,求證:f(x)>2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若tan($\frac{π}{4}$+α)=-2,則$\frac{sin2α}{{{{cos}^2}α}}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.x-2y=2變成直線2x′-y′=4的伸縮變換為$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.

查看答案和解析>>

同步練習(xí)冊答案