【題目】若一個(gè)三位數(shù)的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,我們就稱(chēng)這個(gè)三位數(shù)為遞增三位數(shù)”.現(xiàn)從所有的遞增三位數(shù)中隨機(jī)抽取一個(gè),則其三個(gè)數(shù)字依次成等差數(shù)列的概率為__________

【答案】

【解析】

利用列舉法列舉出所有符合遞增三位數(shù)的三位數(shù),并找出符合等差數(shù)列的個(gè)數(shù),即可由古典概型概率的計(jì)算公式求解.

根據(jù)定義遞增三位數(shù)”, 個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字.可知個(gè)位數(shù)最小為3,最大為9

當(dāng)個(gè)位數(shù)為3時(shí),三位數(shù)為,1個(gè).三個(gè)數(shù)字依次成等差數(shù)列的有1個(gè).

當(dāng)個(gè)位數(shù)為4時(shí),三位數(shù)為,3個(gè).三個(gè)數(shù)字依次成等差數(shù)列的為,1個(gè)

當(dāng)個(gè)位數(shù)為5時(shí),三位數(shù)為,6個(gè).三個(gè)數(shù)字成等差數(shù)列的為2個(gè).

當(dāng)個(gè)位數(shù)為6時(shí),三位數(shù)為10個(gè).三個(gè)數(shù)字成等差數(shù)列的為,2個(gè).

當(dāng)個(gè)位數(shù)為7時(shí),三位數(shù)為15個(gè),三個(gè)數(shù)字成等差數(shù)列的為,3個(gè).

當(dāng)個(gè)位數(shù)為8時(shí),三位數(shù)為,.21個(gè), 三個(gè)數(shù)字成等差數(shù)列的為,3個(gè).

當(dāng)個(gè)位數(shù)為9時(shí),三位數(shù)為,,,,,,個(gè), 三個(gè)數(shù)字成等差數(shù)列的為,4個(gè).

綜上可知, “遞增三位數(shù)共有個(gè).三個(gè)數(shù)字成等差數(shù)列的共有個(gè)

則從所有的遞增三位數(shù)中隨機(jī)抽取一個(gè),則其三個(gè)數(shù)字依次成等差數(shù)列的概率為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪(fǎng),求這3名學(xué)生中恰有2名挑同桌的概率;

2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為性別與在選擇座位時(shí)是否挑同桌有關(guān)?

下面的臨界值表供參考:

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來(lái)越受到人們的喜愛(ài),各大購(gòu)物網(wǎng)站為增加收入,促銷(xiāo)策略越來(lái)越多樣化,促銷(xiāo)費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站20181月~8月促銷(xiāo)費(fèi)用(萬(wàn)元)和產(chǎn)品銷(xiāo)量(萬(wàn)件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷(xiāo)費(fèi)用

2

3

6

10

13

21

15

18

產(chǎn)品銷(xiāo)量

1

1

2

3

3.5

5

4

4.5

1)根據(jù)數(shù)據(jù)可知具有線(xiàn)性相關(guān)關(guān)系,請(qǐng)建立的回歸方程(系數(shù)精確到0.01);

2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷(xiāo)量,,則每位員工每日獎(jiǎng)勵(lì)100元;,則每位員工每日獎(jiǎng)勵(lì)150元,,則每位員工每日獎(jiǎng)勵(lì)200.現(xiàn)已知該網(wǎng)站6月份日銷(xiāo)量服從正態(tài)分布,請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位).

參考數(shù)據(jù):,其中,分別為第個(gè)月的促銷(xiāo)費(fèi)用和產(chǎn)品銷(xiāo)量,.

參考公式:①對(duì)于一組數(shù)據(jù),,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過(guò)點(diǎn)F且斜率不為零的直線(xiàn)l與橢圓交于A,B兩點(diǎn),以線(xiàn)段AP為直徑的圓與直線(xiàn)的另一個(gè)交點(diǎn)為Q,證明:直線(xiàn)BQ恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面,上異于的點(diǎn).

1)求證:平面平面;

2)當(dāng)與平面所成角為時(shí),求的長(zhǎng);

3)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)一次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組個(gè)人的血總共需要化驗(yàn).

假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè).試比較方案②中,分別取2,34時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且圓過(guò)橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線(xiàn)的斜率為,且直線(xiàn)交橢圓、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線(xiàn)的斜率之和是否為定值,如果是,請(qǐng)求出此定值:如果不是,請(qǐng)說(shuō)明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列是公差不為零等差數(shù)列,滿(mǎn)足;數(shù)列的前項(xiàng)和為,且滿(mǎn)足.

1)求數(shù)列、的通項(xiàng)公式;

2)在之間插入1個(gè)數(shù),使成等差數(shù)列;在之間插入2個(gè)數(shù),使成等差數(shù)列;……;在之間插入個(gè)數(shù),使成等差數(shù)列,

i)求

ii)是否存在正整數(shù),使成立?若存在,求出所有的正整數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案