精英家教網 > 高中數學 > 題目詳情

(12分)過橢圓的一個焦點的直線交橢圓于、兩點,求面積的最大值.(為坐標原點)

,面積最大,且最大值為。

解析試題分析:由對稱性不妨設直線的方程為代入橢圓方程消y得
然后利用,再借助韋達定理表示出S關于k的函數關系式,再利用基本不等式求最值即可.
由已知:, ,
由對稱性不妨設直線的方程為
聯立消去得:………6分
 
………8分
………10分
 當且僅當
,面積最大,且最大值為………12分
考點:直線與橢圓的位置關系,函數最值,基本不等式求最值.
點評:解本小題的關鍵是建立S關于直線斜率k的函數關系式,方法是
,再借助韋達定理即可得到.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)雙曲線的離心率為2,坐標原點到
直線AB的距離為,其中A,B.  
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在軸正半軸上的端點,過作直線與雙曲線交于兩點,求
時,直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已(12分)知橢圓的中心在坐標原點,離心率為,一個焦點是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線過點F交橢圓于A、B兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)設,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 已知均在橢圓上,直線分別過橢圓的左、右焦點時,有
(1)求橢圓的方程
(2)設是橢圓上的任一點,為圓的任一條直徑,求的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

點P是圓上的一個動點,過點P作PD垂直于軸,垂足為D,Q為線段PD的中點。
(1)求點Q的軌跡方程。
(2)已知點M(1,1)為上述所求方程的圖形內一點,過點M作弦AB,若點M恰為弦AB的中點,求直線AB的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設橢圓的另一個焦點為,問拋物線上是否存在一點,使得關于直線對稱,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

雙曲線的離心率為2,坐標原點到直線AB的距離為,其中A,B.
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在軸正半軸上的端點,過B1作直線與雙曲線交于兩點,求時,直線的方程.

查看答案和解析>>

同步練習冊答案