分析 ①根據(jù)f(2k-x)與f(x)的關系,可以判斷函數(shù)y=f(x)的圖象是否關于點(k,0)(k∈Z)對稱;
②根據(jù)讓函數(shù)解析式有意義的原則確定函數(shù)的定義域,然后根據(jù)解析式易用分析法求出函數(shù)的值域;
③再判斷f(x+1)=f(x)是否成立,可以判斷③的正誤;
而由②的結論,易判斷函數(shù)y=f(x)在 ($-\frac{1}{2}$,$\frac{3}{2}$]上的單調性,但要說明④不成立,我們可以舉出一個反例.
解答 解:①∵f(2k-x)=(2k-x)-{2k-x}=(-x)-{-x}=$\left\{\begin{array}{l}{0,m≤x≤m+\frac{1}{2}}\\{1,m-\frac{1}{2}<x<m}\end{array}\right.$,
∴點(k,0)(k∈Z)不是y=f(x)的圖象的對稱中心;故①錯;
②令x=m+a,a∈(-$\frac{1}{2}$,$\frac{1}{2}$]
∴f(x)=x-{x}=a∈(-$\frac{1}{2}$,$\frac{1}{2}$],故②正確,
③,∵f(x+1)=(x+1)-{x+1}=x-{x}=f(x)
所以周期為1,故③正確;
④x=-$\frac{1}{2}$時,m=-1,f(-$\frac{1}{2}$)=$\frac{1}{2}$,
x=$\frac{1}{2}$時,m=0,則f( $\frac{1}{2}$)=$\frac{1}{2}$
所以f(-$\frac{1}{2}$)=f( $\frac{1}{2}$),則函數(shù)y=f(x)在(-$\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù)錯誤,
故答案為:②③
點評 本題考查的知識點是利用函數(shù)的三要素、性質判斷命題的真假,我們要根據(jù)定義中給出的函數(shù),結合求定義域、值域的方法,及對稱性、周期性和單調性的證明方法,對4個結論進行驗證.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com