分析 (1)由已知可得BOEF為平行四邊形,可得OE∥BF,通過證明平面BCF∥平面OGE,即可得證CF∥平面OGE.
(2)連接OF,由(1)可知ODEF為正方形,可得DF⊥OE,進而證明AC⊥平面BDEF,可得DF⊥AC,即可證明DF⊥平面ACE.
解答 證明:(1)∵EF∥BD,BD=2EF=2,O為正方形ABCD的中心,
∴EF∥OB,EF=OB,即BOEF為平行四邊形,
∴OE∥BF,
又∵OE?平面OGE,BF?平面OGE,
∴BF∥平面OGE,
∵BC∥AD∥GE,
∴BC∥平面OGE,
∵BC∩BF=B,
∴平面BCF∥平面OGE,
∴CF∥平面OGE.
(2)連接OF,由(1)可知ODEF為正方形,
∴DF⊥OE,
又∵四邊形ABCD為正方形,
∴BD⊥AC.
又∵平面ABCD⊥平面BDEF,且平面ABCD∩平面BDEF=BD,
∴AC⊥平面BDEF,
∴DF⊥AC
又OE∩AC=O,
∴DF⊥平面ACE.
點評 本題考查直線與平面垂直的判定,直線與平面平行的判定,考查空間想象能力,邏輯思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{9}{4}$ | B. | $\frac{4\sqrt{2}}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,-1] | C. | [1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1) | B. | (0,3] | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com