已知函數(shù)()
(1)當(dāng)a=2時,求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱為、的“伴隨函數(shù)”.已知函數(shù),,若在區(qū)間(1,+∞)上,函數(shù)是、的“伴隨函數(shù)”,求a的取值范圍。
(1)的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2;
(2).
【解析】
試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、恒成立問題等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,對求導(dǎo),判斷函數(shù)的單調(diào)性,函數(shù)遞增,則在區(qū)間2個端點(diǎn)處取得最大值和最小值;第二問,由新定義將題目轉(zhuǎn)化為,在(1,+∞)上恒成立,對求導(dǎo),對的根進(jìn)行討論,判斷函數(shù)的單調(diào)性,求出最大值,令最大值小于0,同理,對求導(dǎo),求最大值,需要注意如果最大值能夠取到,則最大值小于0,若最大值取不到,則最大值小于等于0.
(1)當(dāng)a=2時,,則
當(dāng)x∈[e,e2]時,,即此時函數(shù)單調(diào)遞增,
∴的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2. 4分
(2)若在區(qū)間(1,+∞)上,函數(shù)是、的“伴隨函數(shù)”,
即<<,令在(1,+∞)上恒成立,在(1,+∞)上恒成立,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719183635367292/SYS201411171918525261133329_DA/SYS201411171918525261133329_DA.017.png">
①若,由得
當(dāng),即時,在(x2,+∞)上,有,此時函數(shù)單調(diào)遞增,并且在該區(qū)間上有,不合題意.
當(dāng)x2<x1=1,即a≥1時,同理可知在區(qū)間(1,+∞)上,有,不合題意.
②若a≤,則有2a 1≤0,此時在區(qū)間(1,+∞)上,有p'(x)<0,此時函數(shù)p(x)單調(diào)遞減,要使p(x)<0恒成立,只需要滿足,即可
此時, 9分
又,則h(x)在(1,+∞)上為減函數(shù),則h(x)<h(1)=,所以 11分
即a的取值范圍是。 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在斜三棱柱中,側(cè)面⊥底面,側(cè)棱與底面成60°的角,.底面是邊長為2的正三角形,其重心為點(diǎn),是線段上一點(diǎn),且.
(1)求證://側(cè)面;
(2)求平面與底面所成銳二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若 ,則復(fù)數(shù)=( )
A. B. C. D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
雙曲線的左右焦點(diǎn)分別為,且恰為拋物線的焦點(diǎn),設(shè)雙曲線與該拋物線的一個交點(diǎn)為,若是以為底邊的等腰三角形,則雙曲線的離心率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)是虛數(shù)單位,則“”是“為純虛數(shù)”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在中,是邊中點(diǎn),角,,的對邊分別是,,,若,則的形狀為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
雙曲線的左右焦點(diǎn)分別為,且恰為拋物線的焦點(diǎn),設(shè) 雙曲線與該拋物線的一個交點(diǎn)為,若是以為底邊的等腰三角形,則雙曲線的離心 率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊市畢業(yè)班第一次模擬考試數(shù)學(xué)理科數(shù)學(xué)試卷(解析版) 題型:填空題
若實(shí)數(shù)a,b,c,d滿足︱b+a2-3lna︱+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省唐山市高三年級第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
長為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動,,點(diǎn)P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com