4.已知函數(shù)f(x)=sin(2x+φ),|φ|<π,則f(x)在(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增的概率為$\frac{1}{4}$.

分析 由題意可得可得-π<φ<π,結(jié)合函數(shù)f(x)=sin(2x+φ)在(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增求得-$\frac{π}{2}$≤φ≤0,從而求得函數(shù)f(x)=sin(2x+φ)在(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增的概率.

解答 解:由|φ|<π,可得-π<φ<π,由函數(shù)f(x)=sin(2x+φ)在(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增,
可得-$\frac{π}{2}$≤φ<$\frac{π}{2}$,且-$\frac{π}{2}$<$\frac{π}{2}$+φ≤$\frac{π}{2}$,求得-$\frac{π}{2}$≤φ≤0.
故f(x)在(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增的概率為$\frac{\frac{π}{2}}{2π}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題主要考查正弦函數(shù)的單調(diào)性,幾何概型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≥0}\\{\;}\end{array}\right.$,則z=x-2y的最小值是( 。
A.3B.1C.-3D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知兩個單位向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$,向量2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角為θ.則cosθ=-$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+2ny-1=0(mn>0)上,求$\frac{1}{m}+\frac{1}{n}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足z(1-i)=i2017(i是虛數(shù)單位),則復(fù)數(shù)z等于(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x是實數(shù),y是純虛數(shù),且x+y=(2-x)i,則x=0,y=2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且點(diǎn)A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)若圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.現(xiàn)有兩個班級,每班各出4名選手進(jìn)行羽毛球的男單、女單、男女混合雙打(混雙)比賽(注:每名選手打只打一場比賽).根據(jù)以往的比賽經(jīng)驗,各項目平均完成比賽所需時間如表所示,現(xiàn)只有一塊比賽場地,各場比賽的出場順序等可能.
比賽項目男單女單混雙
平均比賽時間25分鐘20分鐘35分鐘
(Ⅰ)求按女單、混雙、男單的順序進(jìn)行比賽的概率;
(Ⅱ)求第三場比賽平均需要等待多久才能開始進(jìn)行;
(Ⅲ)若要使所有參加比賽的人等待的總時間最少,應(yīng)該怎樣安排比賽順序(寫出結(jié)論即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(理)在二項式${({{x^2}-\frac{1}{x}})^n}$的展開式中,所有二項式系數(shù)的和是32,則展開式中各項系數(shù)的和為( 。
A.32B.-32C.0D.1

查看答案和解析>>

同步練習(xí)冊答案