精英家教網 > 高中數學 > 題目詳情
14.已知復數z1=2-3i,z2=$\frac{15-5i}{(2+i)^{2}}$.求:(1)z1+$\overline{{z}_{2}}$;(2)z1•z2;(3)$\frac{{z}_{1}}{{z}_{2}}$.

分析 根據復數的混合運算法則和共軛復數的定義即可求出.

解答 解 z2=$\frac{15-5i}{(2+i)^{2}}$=$\frac{15-5i}{3+4i}$=$\frac{5(3-i)(3-4i)}{(3+4i)(3-4i)}$=$\frac{5-15i}{5}$=1-3i.
(1)z1+$\overline{{z}_{2}}$=(2-3i)+(1+3i)=3.
(2)z1•z2=(2-3i)(1-3i)=2-9-9i=-7-9i.
(3)$\frac{{z}_{1}}{{z}_{2}}$=$\frac{2-3i}{1-3i}$=$\frac{(2-3i)(1+3i)}{(1-3i)(1+3i)}$
=$\frac{2+9+3i}{10}$=$\frac{11}{10}$+$\frac{3}{10}$i.

點評 本題考查了復數代數形式的乘除運算,屬于基礎題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

11.已知函數f(x)=$\frac{{cos({ωx+φ})}}{{a•{e^{|x|}}}}$(ω>0,|φ|<$\frac{π}{2}$,a∈R)在區(qū)間[-3,3]上的圖象如圖所示,則$\frac{ω}{a}$可。ā 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.高二一班有A,B兩個社會實踐活動小組,每組七個人,現從每組中各選出一個人分別完成一項手工作品,每位成員完成作品所需要的時間(單位:小時)如下所示
A組:10,11,12,13,14,15,16;
B組:12,13,15,16,17,14,a
假設A、B兩組每位成員被選出的可能性均等,從A組選出的人記為甲,從B組選出的人記為乙
(1)如果a=18,求甲所用時間比乙所用時間長的概率;
(2)如果a=14,設甲與乙所用時間都低于15,記甲與乙的所用時間的差的絕對值為X,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足|PQ|=2,∠PF2Q=90°,且△PF2Q的面積為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l不經過點A(0,1),且與橢圓交于M,N兩點,若以MN為直徑的圓經過點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow$,則2$\overrightarrow{a}$+3$\overrightarrow$等于( 。
A.(-5,-10)B.(-3,-6)C.(-4,-8)D.(-2,-4)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知F是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點,點P在橢圓C上,線段PF與圓${(x-\frac{c}{3})^2}+{y^2}=\frac{b^2}{9}$相切于點Q,且PQ=2QF,則橢圓C的離心率等于(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知隨機變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.15,則P(0≤ξ≤1)=0.35.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出x的值為127,則輸入的正整數x的所有可能取值的個數為( 。
A.2B.5C.3D.7

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.下列函數中,既是偶函數又在(0,π)上單調遞增的是( 。
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

查看答案和解析>>

同步練習冊答案