4.下列函數(shù)中,既是偶函數(shù)又在(0,π)上單調(diào)遞增的是(  )
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

分析 利用三角函數(shù)的性質(zhì)逐個分析判斷.

解答 解:對于A,y=tanx是奇函數(shù),不符合題意;
對于B,y=cos(-x)=cosx在(0,π)上是減函數(shù),不符合題意;
對于C,y=-sin($\frac{π}{2}$-x)=-cosx,∴y=-sin($\frac{π}{2}$-x)是偶函數(shù),且在(0,π)上單調(diào)遞增,符合題意;
對于D,y=|tanx|的定義域為{x|x≠$\frac{π}{2}$+kπ},不符合題意.
故選C.

點評 本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z1=2-3i,z2=$\frac{15-5i}{(2+i)^{2}}$.求:(1)z1+$\overline{{z}_{2}}$;(2)z1•z2;(3)$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,數(shù)列{bn}滿足:bn=nan(n∈N*),設(shè)Sn為數(shù)列{bn}的前n項和,當(dāng)n=7時Sn有最小值,則a1的取值范圍是$({-\frac{1}{18},-\frac{1}{21}})$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將3個骰子全部擲出,設(shè)出現(xiàn)6點的骰子的個數(shù)為X,則P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,在塔底B測得山頂C的仰角為60°,在山頂測得塔頂A的仰角為45°,已知塔高AB=20米,則山高DC=10(3+$\sqrt{3}$)米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知傾斜角為α的直線l與直線x-2y+2=0平行,則sinα的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知下列命題:
①已知a,b是實數(shù),若a+b是有理數(shù),則a,b都是有理數(shù);
②若a+b≥2,則a,b中至少有一個不小于1;
③關(guān)于x的不等式ax+b>0的解為$x>-\frac{a}$;
④“方程ax2+bx+c=0有一根為1”的充要條件是“a+b+c=0”
其中真命題的序號是②④(請把所有真命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案