某市糧食儲備庫的設(shè)計容量為30萬噸,年初庫存糧食10萬噸,從元月份起,計劃每月收購M萬噸,每月內(nèi)供給市面粉廠糧食1萬噸,另外每月還有大量的糧食外調(diào)任務(wù).已知n個月內(nèi),外調(diào)糧食的總量W萬噸與n的函數(shù)關(guān)系為W=10
n
(1≤n≤16),要使在16個月內(nèi)每月糧食收購后,能滿足內(nèi)用、外調(diào)的需要,且每月糧食調(diào)出后,糧庫內(nèi)有不超過設(shè)計容量的儲備糧,求M的范圍.
考點:函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,0≤10+Mn-n-10
n
≤30,根據(jù)1≤n≤16,即可求M的范圍.
解答: 解:由題意,每月糧食調(diào)出后,糧庫為10+Mn-n-10
n
萬噸
∵要使在16個月內(nèi)每月糧食收購后,能滿足內(nèi)用、外調(diào)的需要,且每月糧食調(diào)出后,糧庫內(nèi)有不超過設(shè)計容量的儲備糧,
∴0≤10+Mn-n-10
n
≤30,則1+10(
1
n
-
1
n
)≤M≤10(
2
n
+
1
n
)+1,
∵1≤n≤16,
1
n
-
1
n
=-(
1
n
-
1
2
2+
1
4
∈[0,
1
4
],
2
n
+
1
n
=2(
1
n
+
1
4
2-
1
8
∈[
3
8
,3],
7
2
≤M≤
19
4
點評:本題考查函數(shù)模型的選擇與應(yīng)用,考查解不等式,考查學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i
1-i
的虛部為( 。
A、-
1
2
i
B、
1
2
i
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(α)=tsinα+cosα的最大值為g(t),則g(t)的最小值為(  )
A、1
B、0
C、|t|+1
D、
t2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一個三棱柱的6個頂點中任取4個做為頂點,能構(gòu)成三棱錐的個數(shù)設(shè)為m;過三棱柱任意兩個頂點的直線(15條)中,其中能構(gòu)成異面直線有n對,則m,n的取值分別為( 。
A、15,45
B、10,30
C、12,36
D、12,48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(2x+
π
4
)+cos(2x+
π
4
),則函數(shù)f(x)( 。
A、圖象關(guān)于直線x=
π
8
對稱
B、圖象關(guān)于直線x=
π
4
對稱
C、圖象關(guān)于直線x=
π
2
對稱
D、圖象關(guān)于直線x=
4
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,向量
a
=(2,-1),
b
=(an+2n,an+1)且
a
b

(Ⅰ)求證數(shù)列{
an
2n
}為等差數(shù)列,并求{an}通項公式;
(Ⅱ)設(shè)bn=
an
n(n+1)2
,若對任意n∈N*都有bn
m2-3m
9
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

調(diào)查某桑場采桑員和輔助工桑毛蟲皮炎發(fā)病情況結(jié)果如下表:
采桑 不采桑 合計
患者人數(shù) 18 12
健康人數(shù) 5 78
合計
利用2×2列聯(lián)表的獨立性檢驗估計,“患桑毛蟲皮炎病與采桑”是否有關(guān)?認為兩者有關(guān)系會犯錯誤的概率是多少?(注:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ACB與△ADB是有公共斜邊AB的兩個等腰直角三角形,平面ACB⊥平面ADB,求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,|AB|=2
2
,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知
OR
OF
,
CR′
CF
,其中0<λ<1.
(Ⅰ)求證:直線ER與GR′的交點M在橢圓Γ:
x2
2
+y2=1上;
(Ⅱ)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案