調(diào)查某桑場(chǎng)采桑員和輔助工桑毛蟲(chóng)皮炎發(fā)病情況結(jié)果如下表:
采桑 不采桑 合計(jì)
患者人數(shù) 18 12
健康人數(shù) 5 78
合計(jì)
利用2×2列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì),“患桑毛蟲(chóng)皮炎病與采!笔欠裼嘘P(guān)?認(rèn)為兩者有關(guān)系會(huì)犯錯(cuò)誤的概率是多少?(注:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)所給的表格中的數(shù)據(jù),代入求觀測(cè)值的公式求出觀測(cè)值,同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為“患桑毛蟲(chóng)皮炎病與采!庇嘘P(guān)系.
解答: 解:因?yàn)閚11=18,n12=12,n21=5,n22=78,
所以n1+=30,n2+=83,n+1=23,n+2=90,n=113.
所以χ2=
113×(18×78-5×12)2
30×82×23×90
≈39.6>6.635.
所以有99%的把握認(rèn)為“患桑毛蟲(chóng)皮炎病與采!庇嘘P(guān)系.認(rèn)為兩者有關(guān)系會(huì)犯錯(cuò)誤的概率是1%.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)知識(shí)及應(yīng)用,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-2)2+(y-b)2=r2(b>0)經(jīng)過(guò)點(diǎn)(1,0),且圓C被x、y軸截得的弦長(zhǎng)之比為1:
3
,則b和r的值分別是( 。
A、b=
6
,r=
7
B、b=
7
,r=
6
C、b=
15
,r=4
D、b=4,r=
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(x+
π
4
)的一個(gè)單調(diào)增區(qū)間是( 。
A、[-π,0]
B、[0,
π
4
]
C、[
π
4
,
π
2
]
D、[
π
2
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市糧食儲(chǔ)備庫(kù)的設(shè)計(jì)容量為30萬(wàn)噸,年初庫(kù)存糧食10萬(wàn)噸,從元月份起,計(jì)劃每月收購(gòu)M萬(wàn)噸,每月內(nèi)供給市面粉廠糧食1萬(wàn)噸,另外每月還有大量的糧食外調(diào)任務(wù).已知n個(gè)月內(nèi),外調(diào)糧食的總量W萬(wàn)噸與n的函數(shù)關(guān)系為W=10
n
(1≤n≤16),要使在16個(gè)月內(nèi)每月糧食收購(gòu)后,能滿足內(nèi)用、外調(diào)的需要,且每月糧食調(diào)出后,糧庫(kù)內(nèi)有不超過(guò)設(shè)計(jì)容量的儲(chǔ)備糧,求M的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某個(gè)幾何體的三視圖如圖所示(單位:m),
(Ⅰ)說(shuō)出該幾何體的結(jié)構(gòu)特征;
(Ⅱ)求該幾何體的體積(結(jié)果保留π);
(Ⅲ)求該幾何體的表面積(結(jié)果保留π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=b2,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得∠APB=90°,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),
a2
|ON|2
+
b2
|OM|2
是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出函數(shù)f(x)=|x+2|的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面點(diǎn)集M={(x,y)|x2-2x+2≤y≤6x-x2-3,且x,y∈Z},求M中元素的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩所學(xué)校高二年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高二年級(jí)學(xué)生在該地區(qū)四校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150]
頻數(shù) 3 4 8 15 15 x 3 2
乙校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150]
頻數(shù) 1 2 8 9 10 10 y 3
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,先用分層抽樣的方法從甲乙兩校優(yōu)秀生共抽取7人,然后再?gòu)?人中隨機(jī)抽取2人,問(wèn)兩人在同一所學(xué)校的概率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校 乙校 總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)

查看答案和解析>>

同步練習(xí)冊(cè)答案