判斷方程x2+y2-4mx+2my+20m-20=0能否表示圓?若能表示圓,求出圓心和半徑.
考點:二元二次方程表示圓的條件
專題:直線與圓
分析:利用配方法即可得到結(jié)論.
解答: 解:將方程進(jìn)行配方得(x-2m)2+(y+m)2=5m2-20m+20=5(m-2)2,
若m=2,則不能表示方程;
若m≠2,則表示圓,圓心坐標(biāo)為(2m,-m),半徑r=
5
|m-2|.
點評:本題主要考查圓的判斷,利用配方法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈(1,2)時,不等式x2+mx+4<0恒成立,則m的取值范圍為( 。
A、(-∞,-5)
B、(-∞,-5]
C、(-5,+∞)
D、[-5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,復(fù)數(shù)z=i(1+3i)對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
x-a
,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(1,2)上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=4 與圓x2+y2-2mx+m2-1=0相外切,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱的側(cè)棱長為2,底面是邊長為2的正三角形,AA1⊥面A1B1C1,正視圖是邊長為2正方形.
(Ⅰ)求側(cè)視圖的面積;
(Ⅱ)求直線AC1與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an-2an-1=n•2n(n∈N*,n≥2),且a1=2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=
an+1
an
,當(dāng)數(shù)列{bn+λn}為遞增數(shù)列時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=x-1,點A(1,2),B(3,1),若在直線l上存在一點P,使得|PA|-|PB|最大,則點P坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和是Sn,且4Sn=(an+1)2,則下列說法正確的是( 。
A、數(shù)列{an}為等差數(shù)列
B、數(shù)列{an}為等差數(shù)列或等比數(shù)列
C、數(shù)列{an}為等比數(shù)列
D、數(shù)列{an}可能既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

同步練習(xí)冊答案