求證:函數(shù)y=xsinx+cosx在區(qū)間(
2
,
2
)上是增函數(shù).
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的導(dǎo)數(shù)在區(qū)間上的符號,利用導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性即可證明本題.
解答: 證明:函數(shù)y=xsinx+cosx,
則函數(shù)y′=sinx+xcosx-sinx=xcosx.
∵x∈(
2
,
2
),∴cosx>0,
∴xcosx>0,即x∈(
2
2
),y′>0恒成立,
∴函數(shù)y=xsinx+cosx在區(qū)間(
2
2
)上是增函數(shù).
命題成立.
點評:本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性的判斷,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+2a)|x-a|+x,a∈R.
(1)當(dāng)a=0時,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若對任意的x∈[-2,2],函數(shù)f(x)圖象恒在函數(shù)g(x)=(2a+1)x+4a2的圖象的下方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=n2•an(n∈N*),且a1=
1
2

(1)求a2,a3,a4的值;
(2)猜想an的表達(dá)式(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是夾角為30°的異面直線,則滿足條件“a⊆α,b⊆β,且α⊥β”的平面α,β( 。
A、不存在B、有且只有一對
C、有且只有兩對D、有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=log2
n+1
n+2
(n∈N*),設(shè)數(shù)列{an}的前n項的和為Sn,則使Sn<-5成立的正整數(shù)n的最小值為
 
(2)已知命題:“在等差數(shù)列{an}中,若4a2+a10+a)=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
4
x2的焦點為F,定點M(1,2),點A為拋物線上的動點,則|AF|+|AM|的最小值為( 。
A、
3
2
B、
5
2
C、3
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對?x,y∈R,函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,f(1)=a(a為大于0的常數(shù)),已知an=f(n)(n∈N*),則下列結(jié)論一定正確的是(  )
A、數(shù)列{lgan}為等差數(shù)列
B、數(shù)列{lgan}為等比數(shù)列
C、數(shù)列{e an}為等差數(shù)列
D、數(shù)列{e an}為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c為偶函數(shù),關(guān)于x的方程f(x)=a(x+1)2(a≠1)的根構(gòu)成集合{1}.
(1)求a,b,c的值;
(2)求證:
f(x)
5
-1
2
|x|+1對任意的x∈[-2,2]恒成立;
(3)設(shè)g(x)=
f(x)
+
f(2-x)
若存在x1,x2∈[0,2],使得|g(x1)-g(x2)|≥m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,雙曲線C1
x2
a2
-
y2
b2
=1,(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,拋物線C2的頂點為坐標(biāo)原點O,焦點為F2,過F1的直線與拋物線C2的一個交點為A,與圓x2+y2=a2相切于點M,若線段F1A的中點恰為M,則雙曲線C1的離心率為( 。
A、
1+
5
2
B、
1+
3
2
C、
5
2
D、
3+
5
3

查看答案和解析>>

同步練習(xí)冊答案