已知拋物線y=
1
4
x2的焦點為F,定點M(1,2),點A為拋物線上的動點,則|AF|+|AM|的最小值為( 。
A、
3
2
B、
5
2
C、3
D、5
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:本題若建立目標(biāo)函數(shù)來求|AF|+|AM|的最小值是困難的,若巧妙地利用拋物線定義,則問題不難解決.
解答: 解:設(shè)點A到準(zhǔn)線的距離為|AE|,由定義知|AF|=|AE|,故|AM|+|AF|=|AF|+|AM|≥|ME|≥|MN|=2+1=3.(M到準(zhǔn)線的垂足設(shè)為N)
取等號時,M,A,E三點共線,∴|AM|+|AF|的最小值等于3.
故選:C.
點評:由拋物線的定義可知,拋物線上的點到焦點的距離等于它到準(zhǔn)線的距離.要重視定義在解題中的應(yīng)用,靈活地進(jìn)行拋物線上的點到焦點距離與到準(zhǔn)線距離的相互轉(zhuǎn)換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點F是拋物線y2=4x的焦點,M,N是該拋物線上兩點,|MF|+|NF|=6,M,N,F(xiàn)三點不共線,則△MNF的重心到準(zhǔn)線距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x+2|+|x-1|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時f′(x)g(x)+f(x)g′(x)<0,且f(-2)=0,則不等式f(x)g(x)<0的解集是(  )
A、(-∞,-2)∪(0,2)
B、(-2,0)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:函數(shù)y=xsinx+cosx在區(qū)間(
2
2
)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}滿足遞推關(guān)系an+1=-an+n,則a5等于( 。
A、
9
2
B、
9
4
C、
11
4
D、
13
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(log2x)=x+
a
x
,a為常數(shù).
(1)求函數(shù)f(x)的表達(dá)式;
(2)如果f(x)為偶函數(shù),求a的值;
(3)如果f(x)為偶函數(shù),用函數(shù)單調(diào)性的定義討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,若Sn=
3
2
an-
1
2
,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正項數(shù)列{an}滿足a2=
1
2
,a6=
1
32
,且
an+1
an
=
an
an-1
(n≥2,n∈N),則log2a4=
 

查看答案和解析>>

同步練習(xí)冊答案