已知數(shù)列
為等差數(shù)列,其中
,
恰為
和
的等比中項(xiàng)。
(Ⅰ)求數(shù)列
的通項(xiàng)公式
;
(Ⅱ)若
,求數(shù)列
的前n項(xiàng)和
。
解:(Ⅰ)設(shè)數(shù)列
的首項(xiàng)為
,公差為
,則:
……(1)
……(2) ……2分
聯(lián)立(1)
、(2)兩式解得:
,
……5分
……6分
(
Ⅱ) 由(1)知
……7分
……9分
=
+
=
……12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)設(shè){a
n}是等差數(shù)列,{b
n}是各項(xiàng)都為正數(shù)的等比數(shù)列,且
a
1=b
1=1,a
3+b
5=21,a
5+b
3=13.
(Ⅰ)求{a
n},{b
n}的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
,
,
(1)令
,證明:
是等比數(shù)列;
(2)求
的通項(xiàng)公式
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
等差數(shù)列—3,1,5,…的第15項(xiàng)的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(本題滿分14分)已知
,點(diǎn)
在曲線
上
且
(Ⅰ)求證:數(shù)列
為等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列
的前n項(xiàng)和為
,若對(duì)于任意的
,存在正整數(shù)t,使得
恒成立,求最小正整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:
①d<0; ②S11>0; ③S12<0; ④使得Sn>0的所有n中的最大值為13;
其中正確命題的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{a
n}的前n項(xiàng)和是
, 則數(shù)列的通項(xiàng)a
n=
查看答案和解析>>