10.已知一個(gè)半球內(nèi)有一個(gè)內(nèi)接直三棱柱ABC-A1B1C1,底面ABC在半球的大圓面上,AA1=4,BC=4$\sqrt{3}$,∠BAC=120°,則半球的表面積為(  )
A.64πB.72πC.80πD.96π

分析 由正弦定理得底面A1B1C1所在圓的半徑為4,所以半球的半徑$R=4\sqrt{2}$,即可得半球的表面積

解答 解:由正弦定理$\frac{BC}{sin∠BAC}=8$,得底面A1B1C1所在圓的半徑為4,
所以半球的半徑$R=4\sqrt{2}$,所以半球的表面積為πR2+2πR2=96π
故選:D

點(diǎn)評(píng) 本題考查了球的內(nèi)接三棱柱,考查了棱柱、球的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為選拔參加“全市高中數(shù)學(xué)競(jìng)賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競(jìng)賽”活動(dòng),為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100)的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù))
(1)求樣本容量n和頻率分布直方圖中x,y的值并求出抽取學(xué)生的平均分
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生在隨機(jī)抽取2名學(xué)生參加“全市高中數(shù)學(xué)競(jìng)賽”,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于A,B兩點(diǎn),當(dāng)A為下頂點(diǎn)時(shí),|AF|=2.
(1)求橢圓E的方程;
(2)直線x=4與x軸交于點(diǎn)G,過(guò)點(diǎn)A作直線x=4的垂線且垂足為C,連接BC與x軸交于點(diǎn)D,求四邊形OADB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.以下命題:
①y=x+$\frac{1}{x}$≥2,
②若a>0,b>0且a+b=2,則ab≤1,
③$\sqrt{x}$+$\frac{4}{\sqrt{x}}$的最小值為4
④a∈R,a2+1>2a.
其中正確命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在三棱錐P-ABCD中,PA=PB=PC=2$\sqrt{6}$,AC=AB=4,且AC⊥AB,則該三棱錐外接球的表面積為( 。
A.B.36πC.48πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若$C_n^0$+$2C_n^1$+$4C_n^2$+…+${2^n}C_n^n$=729,則n=6,$C_n^1+C_n^2+C_n^3+…+C_n^n$=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)=-ex-x圖象上任意一點(diǎn)處的切線為l1,函數(shù)g(x)=ax+2cosx的圖象上總存在一條切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知奇函數(shù)y=f(x),當(dāng)x>0時(shí)f(x)=x2-2x,則當(dāng)x<0時(shí),f(x)=-x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線a,b分別在兩個(gè)不同的平面α,β內(nèi).則“直線a和直線b沒(méi)有公共點(diǎn)”是“平面α和平面β平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案