已知函數(shù)f(x)=6cos2+sinωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)=,且x0∈(-,),求f(x0+1)的值.
(1)函數(shù)f(x)的值域?yàn)閇-2,2].
(2)
【解析】【解析】
(1)由已知可得f(x)=6cos2+sinωx-3=3cosωx+sinωx=2sin(ωx+),
又正三角形ABC的高為2,則|BC|=4,
所以函數(shù)f(x)的最小正周期T=4×2=8,即=8,得ω=,
函數(shù)f(x)的值域?yàn)閇-2,2].
(2)因?yàn)閒(x0)=,由(1)得
f(x0)=2sin(+)=,
即sin(+)=,
由x0∈(-,),得+∈(-,),
即cos(+)==,
故f(x0+1)=2sin(++)
=2sin[(+)+]
=2 [sin(+)cos+cos(+)sin]
=2×(×+×)
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題
已知向量a=(1,2),b=(2,-2).
(1)設(shè)c=4a+b,求(b·c)a;
(2)若a+λb與a垂直,求λ的值;
(3)求向量a在b方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:選擇題
在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足csinA=acosC,則sinA-cos(B+)的最大值為( )
A. B.2 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-6簡單的三角恒等變換(解析版) 題型:選擇題
已知tanα=,則等于( )
A.3 B.6 C.12 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-6簡單的三角恒等變換(解析版) 題型:選擇題
已知cos(α-)+sinα=,則sin(α+)的值是( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:解答題
已知α,β∈(0,π),且tanα=2,cosβ=-.
(1)求cos2α的值;
(2)求2α-β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:選擇題
已知cosα=,cos(α+β)=-,α,β都是銳角,則cosβ=( )
A.- B.- C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:選擇題
將函數(shù)f(x)=sin(2x+)的圖象向左平移φ個單位,得到偶函數(shù)g(x)的圖象,則φ的最小正值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:選擇題
函數(shù)f(x)=lnx-x-a有兩個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(-∞,-1] B.(-∞,-1)
C.[-1,+∞) D.(-1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com