A. | 關(guān)于直線x=$\frac{π}{12}$對(duì)稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對(duì)稱 | ||
C. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱 |
分析 由條件利用正弦函數(shù)的周期性,以及正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.
解答 解:由函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,可得$\frac{2π}{ω}$=π,求得ω=2,f(x)=sin(2x+φ).
其圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)g(x)=sin(2x)的圖象,
故有sin[2(x-$\frac{π}{6}$)+φ]=sin2x,故可取φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故函數(shù)f(x)的圖象的對(duì)稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
令2x+$\frac{π}{3}$=kπ,k∈Z,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,故函數(shù)f(x)的圖象的對(duì)稱中心為 ($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故選:A.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性,以及正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y+6=0 | B. | 4x-2y+9=0 | C. | x+2y-34=0 | D. | 2x-y-18=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com