(1)圓心在直線2x-y-3=0上,且過點(5,2)和點(3,-2).
(2)與y軸相切,圓心在直線x-3x=0上,且被直線y=x截得的弦長為.
解析:因為條件與圓心有直接關系,因此設圓的標準方程即可解決問題.
(1)∵圓過A(5,2),B(3,-2)兩點,
∴圓心一定在線段AB的垂直平分線上.
線段AB的垂直平分線方程為y= (x-4).
設所求圓的圓心坐標為C(a,b),則有
解得
∴C(2,1),r=|CA|=.
∴所求圓的方程為 (x-2)2+(y-1)2=10.
(2)設圓C的方程為 (x-a)2+(y-b)2=r2.
由圓C與y軸相切得|a|=r. ①
又圓心在直線x-3x=0上,∴a-3b=0. ②
圓心C(a,b)到直線y=x的距離為 .
由于弦心距d、半徑r及弦的一半構成直角三角形,
∴. ③
聯立①②③解方程組可得或
故圓C的方程為(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)圓心在直線2x-y-3=0上,且過點(5,2)和點(3,-2).
(2)與y軸相切,圓心在直線x-3x=0上,且被直線y=x截得的弦長為.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年廣東省佛山市順德一中實驗學校高二(上)期中數學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com