13.命題“若x>2,則x>1”的否命題是( 。
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

分析 根據已知中的原命題,結合四種命題的定義,可得答案.

解答 解:命題“若x>2,則x>1”的否命題是“若x≤2,則x≤1”,
故選:B.

點評 本題考查的知識點是四種命題,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線l:x-$\sqrt{3}$y+3=0與橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于A,B兩點,過A,B分別作l的垂線與x軸交于C,D兩點,則|CD|=( 。
A.$\sqrt{3}$B.$\frac{16}{13}$C.$\frac{32}{13}$D.$\frac{30}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設正實數(shù)x,y滿足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),若不等式(x+y)2≤2ax2+(a+1)y2有解,則實數(shù)a的取值范圍是( 。
A.a≥1B.a≥$\frac{8}{9}$C.a≥$\frac{7}{8}$D.a≥$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖:在斜三棱柱ABC-A1B1C1中,四邊形ABB1A1是菱形,四邊形CBB1C1是矩形,AC=5,CB=3,AB=4,∠A1AB=60°.
(1)求證:平面CA1B⊥平面ABB1A1;
(2)求直線A1C與平面ABC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.圓C1:x2+y2+2x+8y-8=0和圓C2:x2+y2-4x-5=0的位置關系為相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.給出下列四個命題:
①函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象可以由y=sin2x的圖象向右平移$\frac{π}{2}$個單位長度得到;
②已知函數(shù)f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$為冪函數(shù),則a=-1;
③若扇形圓心角的弧度數(shù)為2,且扇形弧所對的弦長也是2,則這個扇形的面積為$\frac{1}{si{n}^{2}1}$;
④設函數(shù)f(x)=lg|x|-sinx的零點個數(shù)為n,則n=6.
則其中所有正確命題的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù),設f(x)在[0,1]為非減函數(shù),且滿足以下三個條件;①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x),則f($\frac{1}{3}$)+f($\frac{1}{8}$)等于( 。
A.$\frac{1}{128}$B.$\frac{1}{256}$C.$\frac{1}{512}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知變量x,y成負相關,且由觀測數(shù)據算得樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,則由該觀測數(shù)據算得的線性回歸方程可能是( 。
A.y=0.4x+2.3B.y=2x+2.4C.y=-2x+9.5D.y=-0.4x+4.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=ex(sinx-cosx)(0≤x≤4π),則函數(shù)f(x)的所有極大值之和為(  )
A.eB.eπ+eC.eπ-eD.eπ+e

查看答案和解析>>

同步練習冊答案