A. | e4π | B. | eπ+e2π | C. | eπ-e3π | D. | eπ+e3π |
分析 先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)求出其單調(diào)區(qū)間,進(jìn)而找到其極大值f(2kπ+π)=e2kπ+π,即可求函數(shù)f(x)的各極大值之和.
解答 解:∵函數(shù)f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′=2exsinx,
∵x∈(2kπ,2kπ+π)時,f′(x)>0,x∈(2kπ+π,2kπ+2π)時,f′(x)<0,
∴x∈(2kπ,2kπ+π)時原函數(shù)遞增,x∈(2kπ+π,2kπ+2π)時,函數(shù)f(x)=ex(sinx-cosx)遞減,
故當(dāng)x=2kπ+π時,f(x)取極大值,
其極大值為f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]
=e2kπ+π×(0-(-1))
=e2kπ+π,
又0≤x≤4π,
∴函數(shù)f(x)的各極大值之和S=eπ+e3π.
故選:D.
點(diǎn)評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及等比數(shù)列的求和.利用導(dǎo)數(shù)求得當(dāng)x=2kπ+π時,f(x)取極大值是解題的關(guān)鍵,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值是教學(xué)中的重點(diǎn)和難點(diǎn),學(xué)生應(yīng)熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x<2,則x<1 | B. | 若x≤2,則x≤1 | C. | 若x≤1,則x≤2 | D. | 若x<1,則x<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,使得$x_0^2≤{e^{x_0}}$ | B. | ?x0∈R,使得$x_0^2≤{e^{x_0}}$ | ||
C. | ?x0∈R,使得$x_0^2>{e^{x_0}}$ | D. | ?x0∈R,使得$x_0^2>{e^{x_0}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | ±3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {0,1} | C. | {0,1,2,3} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{8}$ | B. | $\frac{1}{8}$ | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com