20.寫出下列命題的否定,并判斷其真假(要求說明理由):
(1)p:?m∈R,方程x2+x-m=0有實數(shù)根;
(2)q:?x∈R,使得x2+x+1≤0.

分析 (1)直接利用全稱命題的否定是特稱命題寫出結(jié)果即可,再判斷真假即可,
(2)直接利用特稱命題的否定是全稱命題寫出結(jié)果即可,再判斷真假即可.

解答 解:(1)?p:?m∈R,使方程x2+x-m=0無實數(shù)根.
若方程x2+x-m=0無實數(shù)根,則
△=1+4m<0,則m<-$\frac{1}{4}$,
所以當(dāng)m=-1時,?p為真.
(2)?q:?x∈R,使得x2+x+1>0.(真)
因為x2+x+1=(x+$\frac{1}{2}$)2+$\frac{3}{4}$>0
所以?q為真.

點評 本題考查命題的否定特稱命題與全稱命題的關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求三棱錐C1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點A(sin2017°,cos2017°)在直角坐標(biāo)平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x,y有如下觀察數(shù)據(jù)
x0134
y2.44.54.66.5
若y對x的回歸方程是$\stackrel{∧}{y}$=0.83x+a,則a=( 。
A.2.4B.2.84C.3.67D.3.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“點M在曲線$\frac{x^2}{4}+\frac{y^2}{2}=1$上”是“點M的坐標(biāo)滿足方程$y=-\frac{{\sqrt{2}}}{2}\sqrt{4-{x^2}}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于x、y的方程組$\left\{\begin{array}{l}(m+1)x-y-3m=0\\ 4x+(m-1)y+7=0\end{array}\right.$(  )
A.有唯一的解B.有無窮多解
C.由m的值決定解的情況D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=-$\sqrt{3}sinxsin(x+\frac{π}{2})+{cos^2}x-\frac{1}{2}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)的圖象上所有點的橫坐標(biāo)擴大到原來的2倍,再向右平移$\frac{π}{6}$個單位長度,得g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合P={x|1<3x≤9},Q={1,2,3},則P∩Q=( 。
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點,BA=2,AC=1,B1C=3
(1)證明:DE∥平面ABC;
(2)求圓柱OO1的體積和表面積.

查看答案和解析>>

同步練習(xí)冊答案