11.點(diǎn)A(sin2017°,cos2017°)在直角坐標(biāo)平面上位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根據(jù)三角函數(shù)誘導(dǎo)公式,化簡(jiǎn)sin2017°=sin217°,cos2017°=cos217°;
即可判斷點(diǎn)A(sin2017°,cos2017°)在直角坐標(biāo)平面上的位置.

解答 解:2017°=5×360°+217°,為第三象限角,
∴sin2017°=sin217°<0,
cos2017°=cos217°<0;
∴點(diǎn)A(sin2017°,cos2017°)在直角坐標(biāo)平面上位于第三象限.
故選:C.

點(diǎn)評(píng) 本題考查了三角函數(shù)的符號(hào)運(yùn)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知直線l:y=k(x+$\sqrt{3}$)和圓C:x2+(y-1)2=1,若直線l與圓C相切,則k=( 。
A.0B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$或0D.$\sqrt{3}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知:
$1+2+3+…+n=\frac{n(n+1)}{2}$;
$1×2+2×3+…+n(n+1)=\frac{n(n+1)(n+2)}{3}$;
$1×2×3+2×3×4+…+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$,
利用上述結(jié)果,計(jì)算:13+23+33+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=8,an=3Sn-1+8(n≥2)
(1)記bn=log2an,求數(shù)列{bn}的通項(xiàng)公式;
(2)在(1)成立的條件下,設(shè)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若在($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n的展開(kāi)式中,第3項(xiàng)為常數(shù)項(xiàng),且含x項(xiàng)的系數(shù)為a,則直線y=$\frac{a}{4}$x與曲線y=x2所圍成的封閉區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=2x-8+log3x的零點(diǎn)一定位于區(qū)間(  )
A.(1,2)B.(2,3)C.(3,4)D.(5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)$(ω>0,|φ|<\frac{π}{2})$在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)=Asin(ωx+φ)050-50
(1)請(qǐng)將如表數(shù)據(jù)補(bǔ)充完整,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱(chēng)中心.
(3)求當(dāng)$x∈[-\frac{π}{4},\frac{π}{4}]$時(shí),函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.寫(xiě)出下列命題的否定,并判斷其真假(要求說(shuō)明理由):
(1)p:?m∈R,方程x2+x-m=0有實(shí)數(shù)根;
(2)q:?x∈R,使得x2+x+1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x+y≤4\\ x+3y≤7\\ x≥0\\ y≥0\end{array}\right.$則z=3x+2y的最大值為7.

查看答案和解析>>

同步練習(xí)冊(cè)答案