求值:cos
3
+tan(-
15π
4
)+tan225°•cos240°•sin(-60°)•tan(-30°).
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值即可.
解答: 解:原式=cos(2π+
π
3
)+tan(-4π+
π
4
)+tan(180°+45°)•cos(180°+60°)•(-sin60°)•(-tan30°)
=
1
2
+1+1×(-
1
2
)×
3
2
×
3
3

=
3
2
-
1
4
=
5
4
點(diǎn)評(píng):本題考查運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解決問(wèn)題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
+b(x≠0).,其中a,b∈R
(1)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點(diǎn),設(shè)直線l過(guò)點(diǎn)C且垂直于矩形ABCD所在平面,點(diǎn)F是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)P位于平面ABCD的同側(cè).

(1)求證:PE⊥平面ABCD;
(2)設(shè)二面角F-PB-D的大小為θ,若θ=
π
4
,求線段CF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x-2cos2x-1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知c=
3
,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A={x|-3<x<6,x∈R},B={x|x2-5x-6<0,x∈R}.求:
(1)A∪B;
(2)(∁UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=-x(1+x),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
,(其中m為整數(shù)),則m叫作離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上,給出下列關(guān)于函數(shù)f(x)=|{x}-x|的命題:
①函數(shù)f(x)的定義域是R,值域是[-
1
2
,
1
2
];
②函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱;
③函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
④函數(shù)y=f(x)在[-
1
2
1
2
]上是增函數(shù);
其中說(shuō)法正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x,x≤1
-x,x>1
,若f(-x)=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
,|
a
|=2,|
b
|=3,且
a
+2
b
與λ
a
-
b
垂直,則實(shí)數(shù)λ的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案