設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a3+a9=
1
7
S7,且a4,a6為等比數(shù)列{bn}相鄰的兩項(xiàng),則等比數(shù)列{bn}的公比q=
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)和已知可得2a6=a4,由公比的定義可得.
解答: 解:∵Sn是等差數(shù)列{an}的前n項(xiàng)和且a3+a9=
1
7
S7,
∴2a6=
1
7
×
7(a1+a7)
2
=a4,
∴q=
a6
a4
=
1
2
,或q=
a4
a6
=2.
故答案:
1
2
或2.
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式,涉及等差數(shù)列的求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的半徑為3,圓心C在x軸下方且直線y=x上,x軸被圓C截得的弦長(zhǎng)為2
5

(Ⅰ)求圓C的方程;
(Ⅱ)是否存在斜率為1的直線l,使得以l被圓C截得的弦AB為直徑的圓過(guò)原點(diǎn)?若存在,求出l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an=n+2,bn=2n-3,則數(shù)列{anbn}的前n項(xiàng)和Sn等于(  )
A、(n+2)•2n-1-
1
2
B、
1
2
-(n+2)•2n-1
C、(n+1)•2n-2-
1
4
D、
1
4
-(n+1)•2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3x-x3的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=anx2+bnx+nc(ab≠0,n∈N+).
(1)若a,b,c均為整數(shù),且f1(0),f1(1)均為奇數(shù),求證:f1(x)=0沒(méi)有整數(shù)根.
(2)若a,b為兩不相等的實(shí)數(shù),求證:數(shù)列{fn(1)-nc}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上是減函數(shù),g(x)在R上是增函數(shù),則下列各函數(shù)的單調(diào)性分別為
①f[g(x)]是
 

②g[f(x)]是
 
;
③f[f(x)]
 
;
④g[g(x)]
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列6種圖象變換方法:
①圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的
1
2
;
②圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍;
③圖象向右平移
π
3
個(gè)單位;
④圖象向左平移
π
3
個(gè)單位;
⑤圖象向右平移
3
個(gè)單位;
⑥圖象向左平移
3
個(gè)單位.
請(qǐng)用上述變換將函數(shù)y=sinx的圖象變換到函數(shù)y=sin (
x
2
+
π
3
)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(5x-
π
2
)的圖象向右平移
π
4
個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)的橫、縱坐標(biāo)縮短為原來(lái)的
1
2
,所得函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x>1”是“x>a”的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案