A. | 函數(shù)$y=x+\frac{4}{x+1}$最小值為3 | B. | 函數(shù)$y=lgx+\frac{1}{lgx}$最小值為2 | ||
C. | 函數(shù)$y={2^x}+\frac{1}{{{2^x}+1}}$最小值為1 | D. | 函數(shù)$y={x^2}+\frac{1}{x^2}$最小值為2 |
分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出結(jié)論.
解答 解:A.x<-1時,y<0,因此不正確;
B.0<x<1時,lgx<0,此時y<0;
C.$y={2^x}+\frac{1}{{{2^x}+1}}$=2x+1+$\frac{1}{{2}^{x}+1}$-1>2-1=1,因此無最小值.
D.$y={x^2}+\frac{1}{x^2}$≥2$\sqrt{{x}^{2}•\frac{1}{{x}^{2}}}$=2,當(dāng)且僅當(dāng)x=±1時取等號,因此正確.
故選:D.
點評 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計算能力,使用基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>