Loading [MathJax]/jax/output/CommonHTML/jax.js
10.若橢圓x2a2+y22=1(a>b>0)的離心率為14,則雙曲線x2a2-y22=1的漸近線方程為(  )
A.y=±41515xB.y=±3xC.y=±154D.y=±33x

分析 運(yùn)用橢圓的離心率公式可得a,b的關(guān)系,再由雙曲線的漸近線方程,即可得到.

解答 解:橢圓x2a2+y22=1(a>b>0)的離心率為14
a22a=14
即有a=154
則雙曲線x2a2-y22=1的漸近線方程為y=±ax,
即有y=±154x.
故選:C.

點(diǎn)評(píng) 本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程和離心率公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知下列命題:
①若ac=\overrightarrowc,則(a-)•c=0
②|a+|=|a-|,則a
③△ABC中,AB=a,AC=,則三角形的面積S=12|a|||2a2
④△ABC中,G為三角形所在平面內(nèi)一點(diǎn),GA+GB+GC=0,則G為三角形的重心,
其中正確命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法中錯(cuò)誤的個(gè)數(shù)是
①命題“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②若一個(gè)命題的逆命題為真命題,則它的否命題也一定為真命題;
③已知p:x2+2x-3>0,q:13x>1,若命題(¬q)∧p為真命題,則x的取值范圍是(-∞,-3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分條件.( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.y=3sinx2+cosx2在[π,2π]上的最小值是( �。�
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2-1,g(x)=|x-1|.
(I)若a=1,求函數(shù)y=|f(x)|-g(x)的零點(diǎn);
(II)若a<0時(shí),求G(x)=f(x)+g(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2<X≤4)=0.6826,則P(X>4)=(  )
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)={23x14sinπxπ30x1,則f(x)的最小值是(  )
A.-23B.23C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為2的球面上,且三棱錐O-ABC的高為1,點(diǎn)D是線段BC的中點(diǎn),過(guò)點(diǎn)D作球O的截面,則截面面積的最小值為9π4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.我們把形如y=|x|aa0b0的函數(shù)稱(chēng)為“莫言函數(shù)”,其圖象與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)稱(chēng)為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心且與“莫言函數(shù)”的圖象有公共點(diǎn)的圓稱(chēng)為“莫言圓”.則當(dāng)a=b=1時(shí),“莫言點(diǎn)”的坐標(biāo)是(0,1);且“莫言圓”的面積的最小值是3π.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�