10.已知y=f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+2x,則滿足f(f(a))=$\frac{1}{2}$的實(shí)數(shù)a的個(gè)數(shù)為8.

分析 令f(a)=x,則f[f(a)]=$\frac{1}{2}$轉(zhuǎn)化為f(x)=$\frac{1}{2}$.先解f(x)=$\frac{1}{2}$在x≥0時(shí)的解,再利用偶函數(shù)的性質(zhì),求出f(x)=$\frac{1}{2}$在x<0時(shí)的解,最后解方程f(a)=x即可.

解答 解:令f(a)=x,則f[f(a)]=$\frac{1}{2}$變形為f(x)=$\frac{1}{2}$
當(dāng)x≥0時(shí),f(x)=-(x-1)2+1=$\frac{1}{2}$,解得x1=1+$\frac{\sqrt{2}}{2}$,x2=1-$\frac{\sqrt{2}}{2}$;
∵f(x)為偶函數(shù),
∴當(dāng)x<0時(shí),f(x)=$\frac{1}{2}$的解為x3=-1-$\frac{\sqrt{2}}{2}$,x4=-1+$\frac{\sqrt{2}}{2}$;
綜上所述,f(a)=1+$\frac{\sqrt{2}}{2}$,1-$\frac{\sqrt{2}}{2}$,-1-$\frac{\sqrt{2}}{2}$,-1+$\frac{\sqrt{2}}{2}$;
當(dāng)a≥0時(shí),
f(a)=-(a-1)2+1=1+$\frac{\sqrt{2}}{2}$,方程無(wú)解;
f(a)=-(a-1)2+1=1-$\frac{\sqrt{2}}{2}$,方程有2解;
f(a)=-(a-1)2+1=-1-$\frac{\sqrt{2}}{2}$,方程有1解;
f(a)=-(a-1)2+1=-1+$\frac{\sqrt{2}}{2}$,方程有1解;
故當(dāng)a≥0時(shí),方程f(a)=x有4解,由偶函數(shù)的性質(zhì),易得當(dāng)a<0時(shí),方程f(a)=x也有4解,
綜上所述,滿足f[f(a)]=$\frac{1}{2}$的實(shí)數(shù)a的個(gè)數(shù)為8,
故答案為:8.

點(diǎn)評(píng) 本題綜合考查了函數(shù)的奇偶性和方程的解的個(gè)數(shù)問(wèn)題,同時(shí)運(yùn)用了函數(shù)與方程思想、轉(zhuǎn)化思想和分類討論等數(shù)學(xué)思想方法,對(duì)學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力要求較高,是高考的熱點(diǎn)問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在各棱長(zhǎng)均為2的正三棱錐A-BCD中,平面α與棱AB、AD、CD、BC分別相交于點(diǎn)E、F、G、H,則四邊形EFGH的周長(zhǎng)的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an-bn}是等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且a1=1,{Sn-n2an}為常數(shù)列,則Sn=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足條件an+Sn=n2+3n,數(shù)列{bn}滿足條件bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,M為正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}的前2015項(xiàng)的和T2015≥M,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,P($\frac{2\sqrt{6}}{3}$,1)為橢圓C上的點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=kx+b(k≠0)與橢圓C交于不同的兩點(diǎn),且線段AB的垂直平分線過(guò)定點(diǎn)M($\frac{1}{6}$,0),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n+13;
(3)求{(30-an)•2n}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在直角三棱柱ABC-A1B1C1中,AB⊥BC,P是A1C1的中點(diǎn),AB=BC=kPA,若直線PA與平面BB1C1C所成角的正弦值為$\frac{1}{4}$,則k的值為(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知點(diǎn)C(1,5),點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+5y≤0}\\{x-y-2≤0}\end{array}\right.$,表示的平面區(qū)域內(nèi)(含邊界),則|PC|的最小值為( 。
A.$\sqrt{26}$B.$\sqrt{26}$-1C.$\sqrt{26}$+1D.$\sqrt{50}$

查看答案和解析>>

同步練習(xí)冊(cè)答案