19.已知集合A={1,2,5},B={1,3,5},則A∩B={1,5}.

分析 根據(jù)交集的定義可知,交集即為兩集合的公共元素所組成的集合,求出即可

解答 解:由集合A={1,2,5},集合B={1,3,5},
得A∩B={1,5},
故答案為:{1,5}.

點評 此題考查了兩集合交集的求法,是一道基礎題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.若f(x)滿足關(guān)系式f(x)+2($\frac{1}{x}$)=3x,則f(2)的值為( 。
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a>0,實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=3x+y的最小值是2,則a=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$是定義在R上的奇函數(shù),且f(1)=2.
(1)求實數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知A={x|x2-2x-3<0},B={x||x-1|<a}.
(1)若A?B,求實數(shù)a的取值范圍;
(2)若B?A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設全集為R,集合A=(-∞,-1)∪(3,+∞),記函數(shù)f(x)=$\sqrt{x-2}+\sqrt{6-x}$的定義域為集合B
(1)分別求A∩B,A∩∁RB;
(2)設集合C={x|a+3<x<4a-3},若B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設曲線C:$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{{m}^{2}-9}$=1,則“m>3”是“曲線C為雙曲線”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=3|x|+log3|x|.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)說明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并利用單調(diào)性定義證明;
(3)若 f(2a)<28,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知log2b<log2a<log2c,則(  )
A.($\frac{1}{2}$)b>($\frac{1}{2}$)a>($\frac{1}{2}$)cB.($\frac{1}{2}$)a>($\frac{1}{2}$)b>($\frac{1}{2}$)cC.($\frac{1}{2}$)c>($\frac{1}{2}$)b>($\frac{1}{2}$)aD.($\frac{1}{2}$)c>($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

同步練習冊答案