7.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$是定義在R上的奇函數(shù),且f(1)=2.
(1)求實(shí)數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并加以證明.

分析 (1)根據(jù)奇函數(shù)的特性,可得f(0)=0,又由f(1)=2.可得實(shí)數(shù)a,b的值,進(jìn)而得到函數(shù)f(x)的解析式;
(2)求導(dǎo),分析導(dǎo)數(shù)的符號(hào),進(jìn)而判斷函數(shù)f(x)在(-1,1)上的單調(diào)遞增.

解答 解:(1)∵函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$是定義在R上的奇函數(shù),
∴f(0)=0,
又由f(1)=2.
故$\left\{\begin{array}{l}b=0\\ \frac{a}{2}=2\end{array}\right.$,
解得:a=4,b=0,
f(x)=$\frac{4x}{{x}^{2}+1}$,
(2)函數(shù)f(x)在(-1,1)上的單調(diào)遞增,理由如下:
∵f(x)=$\frac{4x}{{x}^{2}+1}$,
∴f′(x)=$\frac{4(1-{x}^{2})}{({x}^{2}+1)^{2}}$,
當(dāng)x∈(-1,1)時(shí),f′(x)≥0恒成立,
故函數(shù)f(x)在(-1,1)上的單調(diào)遞增.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足x2+y2-4x+6y+4=0,則$\sqrt{{x^2}+{y^2}}$的最小值是$\sqrt{13}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}\right.$,其中a=${∫}_{0}^{3}$(x2-1)dx,則z=2|x-1|+|y|的最小值是( 。
A.5B.3C.6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線cos150°x-sin30°y-1=0的傾斜角是120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{1-x}$的定義域是( 。
A.(-∞,1]B.(-∞,0]C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的函數(shù)y=(m2-3)x2m是冪函數(shù),則m=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={1,2,5},B={1,3,5},則A∩B={1,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn).
(1)證明:B1M⊥平面ABM;
(2)求異面直線A1M和C1D1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若點(diǎn)P在$-\frac{4}{3}π$角的終邊上,且P的坐標(biāo)為(-1,y),則y等于( 。
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案