20.設(shè)變量,y滿足約束條件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$,則目標(biāo)函數(shù)z=3x+4y的最小值為(  )
A.1B.3C.$\frac{26}{5}$D.-19

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x+2y-2=0}\end{array}\right.$,解得A(-1,$\frac{3}{2}$),
化目標(biāo)函數(shù)z=3x+4y為y=$-\frac{3}{4}x+\frac{z}{4}$,
由圖可知,當(dāng)直線y=$-\frac{3}{4}x+\frac{z}{4}$過(guò)點(diǎn)A時(shí),直線在y軸上的截距最小,z有最小值為3,
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)無(wú)極值點(diǎn),則a的取值范圍是{a|a≤-4或a≥0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)tanα=$\frac{3}{4}$(α為第三象限角),則sin($\frac{π}{4}$+α)=( 。
A.$\frac{7}{10}$$\sqrt{2}$B.-$\frac{7}{10}$$\sqrt{2}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.定義在R上的函數(shù),對(duì)任意實(shí)數(shù),都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=2,記an=f(n)(n∈N*),則a2016=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$f(x)=\sqrt{4-{x^2}}$,g(x)=|x-2|,則下列函數(shù)中是奇函數(shù)的為( 。
A.h(x)=f(x)+g(x)B.h(x)=f(x)•g(x)C.$h(x)=\frac{g(x)}{2-f(x)}$D.$h(x)=\frac{f(x)}{2-g(x)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:?x∈R,log3x≥0,則(  )
A.¬p:?x∈R,log3x≤0B.¬p:?x∈R,log3x≤0C.¬p:?x∈R,log3x<0D.¬p:?x∈R,log3x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為18萬(wàn)元.
原料限額
A(噸)3212
B(噸)128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.集合A={x|x≥1},B={x|x2<9},則A∩B=( 。
A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若tanα=-$\sqrt{3}$且α是第四象限角,則sinα的值等于(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.-$\frac{\sqrt{3}}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案