【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對(duì)稱(chēng)中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項(xiàng)公式為an=f( )(n∈N),則此數(shù)列前2017項(xiàng)的和為 .
【答案】-2016
【解析】解:若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0), 則函數(shù)f(x)的圖象的對(duì)稱(chēng)中心為(﹣ , ),
現(xiàn)已知函數(shù)f(x)= ,則對(duì)稱(chēng)中心為( ,﹣1),
即有f(x)+f(1﹣x)=﹣2,
則數(shù)列前2017項(xiàng)的和為S2017=f( )+f( )+…+f( )+f(1),
則S2017=f( )+f( )+…+f( )+f(1),
相加可得2S2017=[f( )+f( )]+[f( )+f( )]+…+2f(1)
=﹣2+(﹣2)+…+(﹣2)+0=﹣2×2016,
則此數(shù)列前2017項(xiàng)的和為﹣2016.
故答案為:﹣2016.
由已知結(jié)論可得f(x)的對(duì)稱(chēng)中心為( ,﹣1),即有f(x)+f(1﹣x)=﹣2,此數(shù)列前2017項(xiàng)的和按正常順序?qū)懸槐,再倒過(guò)來(lái)寫(xiě),即運(yùn)用數(shù)列的求和方法:倒序球和法,化簡(jiǎn)即可得到所求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為美化環(huán)境,某市計(jì)劃在以、兩地為直徑的半圓弧上選擇一點(diǎn)建造垃圾處理廠(如圖所示).已知、兩地的距離為,垃圾場(chǎng)對(duì)某地的影響度與其到該地的距離有關(guān),對(duì)、兩地的總影響度對(duì)地的影響度和對(duì)地影響度的和.記點(diǎn)到地的距離為,垃圾處理廠對(duì)、兩地的總影響度為.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)地的影響度與其到地距離的平方成反比,比例系數(shù)為;對(duì)地的影響度與其到地的距離的平方成反比,比例系數(shù)為.當(dāng)垃圾處理廠建在弧的中點(diǎn)時(shí),對(duì)、兩地的總影響度為.
(1)將表示成的函數(shù);
(2)判斷弧上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)、兩地的總影響度最?若存在,求出該點(diǎn)到地的距離;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù),x∈R.
(I)當(dāng)a=0時(shí),求f(x)在區(qū)間[0,2]上的最大值和最小值;
(Ⅱ)求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列命題中,正確命題的個(gè)數(shù)為( )
①兩個(gè)復(fù)數(shù)不能比較大;
②,若,則;
③若是純虛數(shù),則實(shí)數(shù);
④是虛數(shù)的一個(gè)充要條件是;
⑤若是兩個(gè)相等的實(shí)數(shù),則是純虛數(shù);
⑥的一個(gè)充要條件是.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是上的奇函數(shù),且當(dāng)時(shí),,.
(1)若,求的解析式;
(2)若,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若的值域?yàn)?/span>,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(Ⅰ)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2002年北京國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),是以中國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)而設(shè)計(jì)的,弦圖用四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x++3,則對(duì)于y=f(x)在x<0時(shí),下列說(shuō)法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com