已知函數(shù)在處取得極值.
(1)討論和是函數(shù)的極大值還是極小值;
(2)過點(diǎn)作曲線的切線,求此切線方程.
(1)ƒ(-1)=2是極大值,ƒ(1)=-2是極小值
(2)切點(diǎn)坐標(biāo)為M(-2,-2),切線方程為9x-y+16=0
【解析】第一問由函數(shù)在處取得極值.
說明了ƒ′(1)= ƒ′(-1)=0,得到a,b的值,并代入原式中,判定函數(shù)的單調(diào)性,得到極值問題。
第二問中,要求過點(diǎn)作曲線的切線,先設(shè)出切點(diǎn)坐標(biāo),然后結(jié)合導(dǎo)數(shù)的幾何意義得到斜率,表示切線方程,再將A點(diǎn)代入方程中得到點(diǎn)的坐標(biāo),求解得到。
解:(1)ƒ′(x)=3ax2+2bx-3,依題意,ƒ′(1)= ƒ′(-1)=0,即
3a+2b-3=0,
3a-2b-3=0.解得a=1, b=0.
∴ƒ(x)=x3-3x,ƒ′(x)=3x2-3=3(x+1)(x-1).
令ƒ′(x)=0,得x1=-1,x2=1.
若x∈(-∞,-1)∪(1,+∞),則ƒ′(x)>0,故ƒ(x)在(-∞,-1),(1,+∞)上是增函數(shù).
若x∈(-1,1),則ƒ′(x)<0,故ƒ(x)在(-1,1)上是減函數(shù).
所以ƒ(-1)=2是極大值,ƒ(1)=-2是極小值.
(1)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上,設(shè)切點(diǎn)為M(x0,y0)
則點(diǎn)M的坐標(biāo)滿足y0= x03-3x0,
因?yàn)閒’(x0)=3(x02-1),故切線方程為
y-y0=3(x02-1)(x-x9)
因?yàn)辄c(diǎn)A在曲線上,則可知16-(x03-3x0)=3(x02-1)(x-x9)
化簡得到x0=-2,
所以切點(diǎn)坐標(biāo)為M(-2,-2),切線方程為9x-y+16=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆度江西南昌二中高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)已知函數(shù)在處取得極值.
(1) 求;
(2 )設(shè)函數(shù),如果在開區(qū)間上存在極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省畢節(jié)市高三上學(xué)期第三次月考理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)=在處取得極值.
(1)求實(shí)數(shù)的值;
(2) 若關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省高三第一次月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分) 已知函數(shù)在處取得極值。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求證:對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有;
(Ⅲ)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)為實(shí)數(shù)。
(Ⅰ)已知函數(shù)在處取得極值,求的值;
(Ⅱ)已知不等式對(duì)任意都成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三第二階段考試數(shù)學(xué)理卷 題型:解答題
(12分)已知函數(shù)在處取得極值.
(Ⅰ)求實(shí)數(shù)的值;[來源:學(xué)+科+網(wǎng)]
(Ⅱ)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com