11.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x}+\sqrt{x-1}}}$,程序框圖如圖所示,若輸出的結(jié)果S=10,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤100?B.n≤99?C.n>100?D.n>99?

分析 模擬程序框圖的運行過程,找出此框圖的算法功能,由條件S=10得出n的值,從而確定判斷框內(nèi)的條件.

解答 解:∵f(x)=$\frac{1}{\sqrt{x}+\sqrt{x-1}}$=$\sqrt{x}$-$\sqrt{x-1}$,
∴模擬程序框圖的運行過程,得;
n=1時,S=0+f(1)=1,
n=2時,S=1+($\sqrt{2}$-1)=$\sqrt{2}$,
n=3時,S=$\sqrt{2}$+($\sqrt{3}$-$\sqrt{2}$)=$\sqrt{3}$,
以此類推,S=$\sqrt{n}$=10,
得n=100,
故判斷框中應(yīng)填“n≤100?”.
故選:A.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.化簡
(1)$\sqrt{1-si{n}^{2}440°}$
(2)$\frac{\sqrt{1-2sin10°cos10°}}{sin10°-\sqrt{1-si{n}^{2}10°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列變量間的關(guān)系屬于線性關(guān)系的是(  )
A.球的體積與表面積之間的關(guān)系
B.正方形面積和它的邊長之間的關(guān)系
C.家庭收入愈多,其消費支出也有增長的趨勢
D.價格不變的條件下,商品銷售額與銷量量之間的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-1,4),$\overrightarrow m$=$\overrightarrow a$-λ$\overrightarrow b$,$\overrightarrow n$=2$\overrightarrow a$-$\overrightarrow b$,若$\overrightarrow m$∥$\overrightarrow n$,則λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.當a=2時,如圖所示的程序段輸出的結(jié)果是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=log2(x+1),g(x)=log2$\frac{1}{1-x}$,記F(x)=2f(x)+g(x)
(Ⅰ)求函數(shù)F(x)的定義域D及其零點;
(Ⅱ)若關(guān)于x的方程F(x)-log2m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)曲線y=$\frac{1}{x}$在點(1,1)處的切線與直線ax+y+1=0垂直,則a=( 。
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知定義在R上的奇函數(shù)f(x),滿足2016f(-x)<f′(x)恒成立,且f(1)=e-2016,則下列結(jié)論正確的是( 。
A.f(2016)<0B.f(2016)<e${\;}^{-201{6}^{2}}$
C.f(2)<0D.f(2)>e-4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知某幾何體的俯視圖是如圖所示的邊長為2的正方形,正視圖與側(cè)視圖是邊長為2的正三角形,則該幾何體的體積是$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案