3.設(shè)曲線y=$\frac{1}{x}$在點(1,1)處的切線與直線ax+y+1=0垂直,則a=( 。
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 由y=$\frac{1}{x}$,知y′|x=1=-1,由曲線y=$\frac{1}{x}$在點(1,1)處的切線與直線ax+y+1=0垂直,知-a=1,由此能求出a.

解答 解:∵y=$\frac{1}{x}$,
∴y′=-$\frac{1}{{x}^{2}}$,
∴y′|x=1=-1,
∵曲線y=$\frac{1}{x}$在點(1,1)處的切線與直線ax+y+1=0垂直,
∴-a=1,即a=-1.
故選:B.

點評 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及導(dǎo)數(shù)的幾何意義:在切點處的導(dǎo)數(shù)值即為切線的斜率,兩直線垂直則斜率乘積為-1,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求以兩條直線3x-2y+12=0和4x+3y-1=0的交點為圓心,且與y軸相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在(0,2π)內(nèi),與$-\frac{7π}{6}$終邊相同的角是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x}+\sqrt{x-1}}}$,程序框圖如圖所示,若輸出的結(jié)果S=10,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤100?B.n≤99?C.n>100?D.n>99?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1所示,在邊長為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1′分別交BB1,CC1于點P,Q,將該正方形沿BB1、CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥PQ;
(Ⅱ)在底邊AC上是否存在一點M,滿足BM∥平面APQ,若存在試確定點M的位置,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C過點(0,2)且與直線x+$\sqrt{3}$y-4=0切于點$(1,\sqrt{3})$.
(1)求圓C的方程;
(2)若P,Q為圓C與y軸的交點(P在Q上),過點T(0,4)的直線l交圓C于M,N兩點,若M,N都不與P,Q重合時,是否存在定直線m,使得直線PN與QM的交點G恒在直線m上.若存在,求出直線m的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于非空集合A,B,定義運(yùn)算:A⊕B={x|x∈A∪B,且x∉A∩B},已知M={x|a<x<b},N={x|c<x<d},其中a、b、c、d滿足條件a+b=c+d,ab<cd<0,則M⊕N=( 。
A.(a,d)∪(b,c)B.(c,a]∪[b,d)C.(a,c]∪[d,b)D.(c,a)∪(d,b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對定義域分別為D1,D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),則h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在(0,+∞)上的函數(shù)f(x)滿足:?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),則( 。
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案