1.已知某幾何體的俯視圖是如圖所示的邊長(zhǎng)為2的正方形,正視圖與側(cè)視圖是邊長(zhǎng)為2的正三角形,則該幾何體的體積是$\frac{4\sqrt{3}}{3}$.

分析 根據(jù)幾何體的三視圖,得出該幾何體是底面為正方形的正四棱錐,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面邊長(zhǎng)為2的正方形,斜高為2的四棱錐,
且四棱錐的高為$\sqrt{{2}^{2}{-1}^{2}}$=$\sqrt{3}$的正四棱錐.
∴它的體積為V=$\frac{1}{3}$×22×$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故答案為:$\frac{4\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了利用空間幾何體的三視圖求體積的問(wèn)題,也考查了空間想象能力的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x}+\sqrt{x-1}}}$,程序框圖如圖所示,若輸出的結(jié)果S=10,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤100?B.n≤99?C.n>100?D.n>99?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)定義域分別為D1,D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),則h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知命題p:函數(shù)f(x)=sinxcosx的單調(diào)遞增區(qū)間[$kπ-\frac{π}{4}$,$kπ+\frac{π}{4}$](k∈Z);命題q:函數(shù)g(x)=sin(x+$\frac{π}{2}$) 的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則下列命題中為真命題的是( 。
A.p∧qB.p∨qC.-pD.(-p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}2x,0≤x≤1\\ 1,1<x<2\\ 3,x≥2\end{array}$的值域是( 。
A.RB.[0,2]∪{3}C.[0,+∞)D.[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義在(0,+∞)上的函數(shù)f(x)滿足:?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),則(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若圓C1的方程是x2+y2-4x-4y+7=0,圓C2的方程為x2+y2-4x-10y+13=0,則兩圓的公切線有(  )
A.2條B.3條C.4條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.現(xiàn)代城市大多是棋盤(pán)式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1)、B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標(biāo)系中,寫(xiě)出所有滿足到原點(diǎn)的“直角距離”
為2的“格點(diǎn)”的坐標(biāo);(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)定義:“圓”是所有到定點(diǎn)“直角距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3),B(1,1),C(3,3),求經(jīng)過(guò)這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫(huà)出大致圖象;
(3)設(shè)P(x,y),集合B表示的是所有滿足D(PO)≤1的點(diǎn)P所組成的集合,
點(diǎn)集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案