分析 (1)求出導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解不等式即可得到所求增區(qū)間;
(2)求得f(x)在區(qū)間[-4,4]內(nèi)的單調(diào)區(qū)間,求得極值,以及端點(diǎn)處的函數(shù)值,可得最大值,解方程可得a的值.
解答 解:(1)$f(x)=-\frac{1}{3}{x^3}+{x^2}+3x+a$,
則f′(x)=-x2+2x+3,
令f′(x)>0,即-x2+2x+3>0,解得-1<x<3,
所以函數(shù)f(x)的單調(diào)減區(qū)間為(-1,3).
(2)由函數(shù)在區(qū)間[-4,4]內(nèi)的列表可知:
x | -4 | (-4,-1) | -1 | (-1,3) | 3 | (3,4) | 4 |
f′(x) | - | 0 | + | 0 | - | ||
f(x) | 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≤2 | B. | -1<k<0 | C. | -2≤k<-1 | D. | k≤-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com