14.一個(gè)三棱錐的三視圖如圖所示,其中俯視圖為等腰直角三角形,正視圖和側(cè)視圖是全等的等腰三角形,則此三棱外接球的表面積為( 。
A.16πB.C.D.π

分析 由題意,確定三棱錐的形狀,設(shè)三棱錐外接球的半徑為r,則r2=(2-r)2+($\sqrt{2}$)2,求出r,即可求出三棱錐外接球的表面積.

解答 解:由題意,三棱錐的一個(gè)側(cè)面垂直于底面,底面是等腰直角三角形,頂點(diǎn)在底面中的射影是底面斜邊的中點(diǎn),
設(shè)三棱錐外接球的半徑為r,則r2=(2-r)2+($\sqrt{2}$)2,
∴r=$\frac{3}{2}$,
∴三棱錐外接球的表面積為4π×$\frac{9}{4}$=9π,
故選:B.

點(diǎn)評(píng) 本題考查球和幾何體之間的關(guān)系,本題解題的關(guān)鍵是確定三棱錐外接球的半徑,從而得到外接球的表面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)二元碼是由0和1組成的數(shù)字串${x_1}{x_2}…{x_n}({n∈{N^*}})$,其中xk(k=1,2,…,n)稱為第k位碼元,二元碼是通信中常用的碼,但在通信過程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?)
已知某種二元碼x1x2…x7的碼元滿足如下校驗(yàn)方程組:$\left\{\begin{array}{l}{x_4}⊕{x_5}⊕{x_6}⊕{x_7}=0\\{x_2}⊕{x_3}⊕{x_6}⊕{x_7}=0\\{x_1}⊕{x_3}⊕{x_5}⊕{x_7}=0\end{array}\right.$
其中運(yùn)算⊕定義為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
現(xiàn)已知一個(gè)這種二元碼在通信過程中僅在第k位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定k等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)α,β是兩個(gè)不同的平面,l,m是兩條不同的直線,且l?α,m?β,( 。
A.若l⊥β,則α⊥βB.若α⊥β,則l⊥mC.若l∥β,則α∥βD.若α∥β,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)A(1,2)在拋物線C:y2=4x上,過點(diǎn)A作兩條直線分別交拋物線于點(diǎn)D,E,直線AD,AE的斜率分別為kAD,KAE.若直線DE過點(diǎn)(-1,-2),則kAD•kAE=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A,B分別為橢圓$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn),直線y=kx(k>0)與橢圓交于C,D兩點(diǎn),若四邊形ABCD的面積最大值為2c2,則橢圓的離心率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在四面體ABCD中,AD⊥AB,AD⊥DC,若AD與BC成角60°,且AD=$\sqrt{3}$,則BC等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.安排A、B、C、D、E、F六名義工照顧甲、乙、丙三位老人,每?jī)晌涣x工照顧一位老人,考慮到義工與老人住址距離問題,義工A不安排照顧老人甲,義工B不安排照顧老人乙,安排方法有( 。┓N.
A.30B.40C.42D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,A、B、C的對(duì)邊分別為a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,則△ABC的面積為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若2b2-a2=4,求|a-2b|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案