A. | [-$\frac{5}{4}$,0) | B. | (0,+∞) | C. | [-$\frac{5}{4}$,0)∪(0,+∞) | D. | [-$\frac{5}{4}$,0)∪[$\frac{5}{4}$,+∞) |
分析 先求導(dǎo),討論在區(qū)間(1,2)上,使f′(x)>0,進(jìn)而求a的范圍.
解答 解:f′(x)=3ax2+6x+3,
當(dāng)a>0時(shí),在區(qū)間(1,2)上,f′(x)>0,f(x)在區(qū)間(1,2)是增函數(shù);
當(dāng)a<0時(shí),f(x)在區(qū)間(1,2)是增函數(shù)
當(dāng)且僅當(dāng):f′(1)≥0且f′(2)≥0,即有3a+9≥0且12a+15≥0
解得-$\frac{5}{4}$≤a<0,
∴a的取值范圍[-$\frac{5}{4}$,0)∪(0,+∞).
故選:C.
點(diǎn)評(píng) 主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.在分析導(dǎo)函數(shù)正負(fù)時(shí),需要對(duì)參數(shù)進(jìn)行分析討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com