(1)設(shè)tanα=-
1
2
,計(jì)算sin2a-sinacosa-2cos2a;
(2)已知cos(750+α)=
1
3
,α是第三象限的角,求cos(1050-α)+sin(α-1050)的值.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)原式分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),把tanα的值代入計(jì)算即可求出值;
(2)根據(jù)(75°+α)+(105°-α)=180°,(75°+α)-(α-105°)=180°,利用誘導(dǎo)公式求出原式各項(xiàng)的值,代入計(jì)算即可求出值.
解答: 解:(1)∵tanα=-
1
2

∴原式=
sin2α-sinαcosα-2cos2α
sin2α+cos2α
=
tan2a-tana-2
tan2a+1
=-1;
(2)∵(75°+α)+(105°-α)=180°,(75°+α)-(α-105°)=180°,
∴cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-
1
3
,sin(α-105°)=sin[(75°+α)-180°]=-sin(75°+α),
∵cos(75°+α)=
1
3
,
∴sin2(75°+α)=1-cos2(75°+α)=
8
9

又∵α是第三象限的角,α+75°可能在第三、第四或y軸的負(fù)半軸上,且cos(75°+α)=
1
3
>0,
∴α+75°在第四象限,
∴sin(α-105°)=sin[(75°+α)-180°]=-sin(75°+α)=
2
2
3
,
則cos(105°-α)+sin(α-105°)=
2
2
-1
3
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)=f(x+2),當(dāng)x∈[3,5]時(shí),f(x)=2-|x-4|,則f(-0.70.6)與f(0.60.7)的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3+mx+c在點(diǎn)P(1,n)處的切線方程為y=2x+1,其中m,n,c∈R,則m+n+c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=(m2-5m+6)+(m-3)i(m∈R)是純虛數(shù),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)玩具廠一年中12月份的產(chǎn)量是1月份產(chǎn)量的a倍,那么該玩具廠這一年中產(chǎn)量的月平均增長(zhǎng)率是( 。
A、
11a
-1
B、
12a
-1
C、
a
11
D、
a
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)集M={x2-5x-5,1},則實(shí)數(shù)x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={1,m(m-1)+(m-1)i},N={-i,i2,i8}(i是虛數(shù)單位)若M∪N=N,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦,設(shè)|AP0|=m,|BP0|=n,求m+2n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若∠A是△ABC最大內(nèi)角,則sinA+cosA的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案