如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,異面直線PA和CD所成角等于60°.
(1)求證:面PCD⊥面PBD;
(2)求直線PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的多面體中, 是菱形,是矩形,平面,,.
(1) 求證:平面平面;
(2) 若二面角為直二面角,求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點(diǎn)M在線段EC上(除端點(diǎn)外)
(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點(diǎn).
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB=BB1=2,求A1D與平面AC1D所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,為平行四邊形,且平面,,為的中點(diǎn),.
(Ⅰ) 求證://;
(Ⅱ)若, 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD中,為正三角形,,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).
(Ⅰ)求證:平面PBD;
(Ⅱ)若時(shí),求二面角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com