在公差為3的等差數(shù)列{an}中,若a1,a3,a4成等比數(shù)列,則S6等于(  )
分析:由a1,a3,a4成等比數(shù)列,可得(a1+6)2=a1(a1+9),可求a1,然后代入等差數(shù)列的前n項(xiàng)和可求.
解答:解:由a1,a3,a4成等比數(shù)列,可得a32=a1a4
(a1+6)2=a1(a1+9),
整理可得,3a1=-36,即a1=-12
由等差數(shù)列的前n項(xiàng)和可得,S6=na1+
n(n-1)
2
d=-12×6+15×3=-27
故選C
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式、等比數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公比為4的等比數(shù)列{bn}中,若Tn是數(shù)列{bn}的前n項(xiàng)積,則有
T20
T10
T30
T20
,
T40
T30
仍成等比數(shù)列,且公比為4100;類(lèi)比上述結(jié)論,在公差為3的等差數(shù)列{an}中,若Sn是{an}的前n項(xiàng)和,則有
 
也成等差數(shù)列,該等差數(shù)列的公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)公比為4的等比數(shù)列{bn}中,若Tn是數(shù)列{bn}的前n項(xiàng)積,則有
T20
T10
,
T30
T20
T40
T30
也成等比數(shù)列,且公比為4100;類(lèi)比上述結(jié)論,相應(yīng)的在公差為3的等差數(shù)列{an}中,若Sn是{an}的前n項(xiàng)和,則有一相應(yīng)的
S20-S10,S30-S20,S40-S30
S20-S10,S30-S20,S40-S30
等差數(shù)列,該等差數(shù)列的公差為
300
300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公比為4的等比數(shù)列{bn}中,若Tn是數(shù)列{bn}的前n項(xiàng)積,則有
T20
T10
T30
T20
,
T40
T30
也成等比數(shù)列,且公比為4100;類(lèi)比上述結(jié)論,相應(yīng)的在公差為3的等差數(shù)列{an}中,若Sn是{an}的前n項(xiàng)和,則有一相應(yīng)的等差數(shù)列,該等差數(shù)列的公差為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

公比為4的等比數(shù)列中,若是數(shù)列的前項(xiàng)積,則有也成等比數(shù)列,且公比為;類(lèi)比上述結(jié)論,相應(yīng)的在公差為3的等差數(shù)列中,若的前項(xiàng)和,則有一相應(yīng)的等差數(shù)列,該等差數(shù)列的公差為(     )

A.100              B.200              C.300              D.400

 

查看答案和解析>>

同步練習(xí)冊(cè)答案