【題目】設(shè)全集UR,集合A{x|1x4}B{x|2ax3a}

(1)a=-2,求BABUA;

(2)BA,求實數(shù)a取值范圍.

【答案】(1)BA[1,4),BUA{x|4x14x5};(2) .

【解析】試題分析:

(1)由題意可得B{4x5},結(jié)合集合的運算法則可得BA[1,4)BUA{x|4x14x5};

(2)分類討論兩種情況可得實數(shù)a的取值范圍是.

試題解析:

(1)UA{x|x1x4}a=-2時,B{4x5},所以BA[1,4),BUA{x|4x14x5}

(2)BA,分以下兩種情形:

B時,則有2a3a,a1.

B時,則有a1

綜上所述,所求a的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的, 的中點.

)設(shè)上的一點,且,求的大小;

)當時,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過點且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實數(shù),若有兩個極值點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.

(1)若A∩B=[1,3],求實數(shù)m的值;

(2)若p是q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側(cè)面BB1C1C,ABBC1,BB12,∠BCC160°

)求證:C1B⊥平面ABC;

)設(shè)0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線交拋物線于兩點,坐標原點為,且12.

(Ⅰ)求拋物線的方程;

(Ⅱ)當以為直徑的圓的面積為時,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)求的單調(diào)區(qū)間;

(II)若對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱底面直角梯形,,是棱上一點,,,,.

(1)求異面直線所成的角;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)log2x (0<x<1),數(shù)列{an}滿足f(2an)2n(nN*)

(1) 求數(shù)列{an}的通項公式;

(2) 判斷數(shù)列{an}的單調(diào)性.

查看答案和解析>>

同步練習冊答案