2.橢圓3x2+4y2=6的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 利用橢圓的標(biāo)準方程及其性質(zhì)即可得出.

解答 解:橢圓3x2+4y2=6化為:$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{\frac{3}{2}}$=1,∴a2=2,b2=$\frac{3}{2}$.
∴橢圓的離心率e=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{1}{2}$.
故選:C.

點評 本題考查了橢圓的標(biāo)準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)α:x≤-5,β:2m-3≤x≤2m+1,若α是β的必要條件,則實數(shù)m的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0,函數(shù)f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在區(qū)間$(0,\frac{1}{2}]$上至少存在一個實數(shù)x0,使f(x0)>g(x0)成立,則a的取值范圍是( 。
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:函數(shù)f(x)=lnx+$\frac{1}{2}{x^2}$-ax為定義域上的增函數(shù),命題q:函數(shù)f(x)=x2+$\frac{2}{x}$,$g(x)={(\frac{1}{2})^x}$-a滿足對?x1∈[1,2],?x2∈[-1,1]有f(x1)≥g(x2)成立,若命題p∨q為真命題,命題p∧q為假命題,則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.$[-\frac{5}{2},+∞)$C.$(-∞,-\frac{5}{2})∪(2,+∞)$D.$(-∞,-\frac{5}{2}]∪[2,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.將圓x2+y2=1上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)過點$N(\sqrt{3},0)$的直線l與C的交點為A,B,與y軸交于點M,且$\overrightarrow{AM}={λ_1}\overrightarrow{AN}$,$\overrightarrow{BM}={λ_2}\overrightarrow{BN}$,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩定點F1(0,-5),F(xiàn)2(0,5),曲線上的點P到F1,F(xiàn)2的距離之差的絕對值為8,則曲線的方程為$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線y=$\frac{1}{x}$與直線y=x及x=4所圍成的封閉圖形的面積為( 。
A.2ln2B.2-ln2C.7-2ln2D.$\frac{15}{2}$-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知函數(shù)f(x)=x3-mx2-nx的圖象與x軸相切,切點為(1,0),且g(x)=f(x)+1,求g(x)的極值.
(2)已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f'(0)=0,$\int_{\;-1}^{\;0}{f(x)dx=-4}$,求a、b、c的值.

查看答案和解析>>

同步練習(xí)冊答案